高中數學(xué)主要分為函數與方程、立體幾何、解析幾何、數列、統計和概率,這幾大部分組成。
函數包括介紹了9個(gè)基本初等函數,函數的性質(zhì)和應用,很少的高數基礎知識(導數和定積分)。這些都是考試的重點(diǎn)!! 立體幾何包括了各種垂直與平行的問(wèn)題【線(xiàn)線(xiàn)垂直(平行)、線(xiàn)面垂直(平行)、面面垂直(平行)】、求空間的角(常用幾何法和坐標法)、求幾何體的體積或表面積。
這部分的考題比較題型固定,解法也比較固定。 解析幾何包括直線(xiàn)、圓、二次曲線(xiàn)(橢圓、雙曲線(xiàn)、拋物線(xiàn))。
這類(lèi)題題型比較多,但是解法卻比較固定(一般都是先設方程、再聯(lián)立方程、通過(guò)其他條件(經(jīng)常會(huì )用到韋達定理)求解參數。最后解出答案。)
數列的題目相當靈活,一般求通項、求和會(huì )經(jīng)常考到,還經(jīng)常和函數聯(lián)系一起出題。所以這類(lèi)題一般都會(huì )是壓軸題。
統計和概率是比較簡(jiǎn)單的題。而且題型和解法都很固定,一般輔導書(shū)都比較詳細。
這些是我總結的,希望對你有幫助!。
乘法與因式分解 a^2-b^2=(a+b)(a-b) a^3+b^3=(a+b)(a^2-ab+b^2) a^3-b^3=(a-b(a^2+ab+b^2) 三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b-b≤a≤b |a-b|≥|a|-|b| -|a|≤a≤|a| 一元二次方程的解 -b+√(b^2-4ac)/2a -b-√(b^2-4ac)/2a 根與系數的關(guān)系 X1+X2=-b/a X1*X2=c/a 注:韋達定理 判別式 b^2-4ac=0 注:方程有兩個(gè)相等的實(shí)根 b^2-4ac>0 注:方程有兩個(gè)不等的實(shí)根 b^2-4ac0 拋物線(xiàn)標準方程 y^2=2px y^2=-2px x^2=2py x^2=-2py 直棱柱側面積 S=c*h 斜棱柱側面積 S=c'*h 正棱錐側面積 S=1/2c*h' 正棱臺側面積 S=1/2(c+c')h' 圓臺側面積 S=1/2(c+c')l=pi(R+r)l 球的表面積 S=4pi*r2 圓柱側面積 S=c*h=2pi*h 圓錐側面積 S=1/2*c*l=pi*r*l 弧長(cháng)公式 l=a*r a是圓心角的弧度數r >0 扇形面積公式 s=1/2*l*r 錐體體積公式 V=1/3*S*H 圓錐體體積公式 V=1/3*pi*r2h 斜棱柱體積 V=S'L 注:其中,S'是直截面面積, L是側棱長(cháng) 柱體體積公式 V=s*h 圓柱體 V=pi*r2h 定理: 1 過(guò)兩點(diǎn)有且只有一條直線(xiàn) 2 兩點(diǎn)之間線(xiàn)段最短 3 同角或等角的補角相等 4 同角或等角的余角相等 5 過(guò)一點(diǎn)有且只有一條直線(xiàn)和已知直線(xiàn)垂直 6 直線(xiàn)外一點(diǎn)與直線(xiàn)上各點(diǎn)連接的所有線(xiàn)段中,垂線(xiàn)段最短 7 平行公理 經(jīng)過(guò)直線(xiàn)外一點(diǎn),有且只有一條直線(xiàn)與這條直線(xiàn)平行 8 如果兩條直線(xiàn)都和第三條直線(xiàn)平行,這兩條直線(xiàn)也互相平行 9 同位角相等,兩直線(xiàn)平行 10 內錯角相等,兩直線(xiàn)平行 11 同旁?xún)冉腔パa,兩直線(xiàn)平行 12兩直線(xiàn)平行,同位角相等 13 兩直線(xiàn)平行,內錯角相等 14 兩直線(xiàn)平行,同旁?xún)冉腔パa 15 定理 三角形兩邊的和大于第三邊 16 推論 三角形兩邊的差小于第三邊 17 三角形內角和定理 三角形三個(gè)內角的和等于180° 18 推論1 直角三角形的兩個(gè)銳角互余 19 推論2 三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內角的和 20 推論3 三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內角 21 全等三角形的對應邊、對應角相等 22邊角邊公理(SAS) 有兩邊和它們的夾角對應相等的兩個(gè)三角形全等 作者:塵世的Angel 2008-11-22 22:48 回復此發(fā)言 --------------------------------------------------------------------------------2 高中數學(xué)公式 23 角邊角公理( ASA)有兩角和它們的夾邊對應相等的兩個(gè)三角形全等 24 推論(AAS) 有兩角和其中一角的對邊對應相等的兩個(gè)三角形全等 25 邊邊邊公理(SSS) 有三邊對應相等的兩個(gè)三角形全等 26 斜邊、直角邊公理(HL) 有斜邊和一條直角邊對應相等的兩個(gè)直角三角形全等 27 定理1 在角的平分線(xiàn)上的點(diǎn)到這個(gè)角的兩邊的距離相等 28 定理2 到一個(gè)角的兩邊的距離相同的點(diǎn),在這個(gè)角的平分線(xiàn)上 29 角的平分線(xiàn)是到角的兩邊距離相等的所有點(diǎn)的集合 30 等腰三角形的性質(zhì)定理 等腰三角形的兩個(gè)底角相等 (即等邊對等角) 31 推論1 等腰三角形頂角的平分線(xiàn)平分底邊并且垂直于底邊 32 等腰三角形的頂角平分線(xiàn)、底邊上的中線(xiàn)和底邊上的高互相重合 33 推論3 等邊三角形的各角都相等,并且每一個(gè)角都等于60° 34 等腰三角形的判定定理 如果一個(gè)三角形有兩個(gè)角相等,那么這兩個(gè)角所對的邊也相等(等角對等邊) 35 推論1 三個(gè)角都相等的三角形是等邊三角形 36 推論 2 有一個(gè)角等于60°的等腰三角形是等邊三角形 37 在直角三角形中,如果一個(gè)銳角等于30°那么它所對的直角邊等于斜邊的一半 38 直角三角形斜邊上的中線(xiàn)等于斜邊上的一半 39 定理 線(xiàn)段垂直平分線(xiàn)上的點(diǎn)和這條線(xiàn)段兩個(gè)端點(diǎn)的距離相等 40 逆定理 和一條線(xiàn)段兩個(gè)端點(diǎn)距離相等的點(diǎn),在這條線(xiàn)段的垂直平分線(xiàn)上 41 線(xiàn)段的垂直平分線(xiàn)可看。
數學(xué)高考基礎知識、常見(jiàn)結論詳解 一、集合與簡(jiǎn)易邏輯: 一、理解集合中的有關(guān)概念 (1)集合中元素的特征: 確定性 , 互異性 , 無(wú)序性 。
集合元素的互異性:如: , ,求 ; (2)集合與元素的關(guān)系用符號 , 表示。 (3)常用數集的符號表示:自然數集 ;正整數集 、;整數集 ;有理數集 、實(shí)數集 。
(4)集合的表示法: 列舉法 , 描述法 , 韋恩圖 。 注意:區分集合中元素的形式:如: ; ; ; ; ; ; (5)空集是指不含任何元素的集合。
( 、和 的區別;0與三者間的關(guān)系) 空集是任何集合的子集,是任何非空集合的真子集。 注意:條件為 ,在討論的時(shí)候不要遺忘了 的情況。
如: ,如果 ,求 的取值。 二、集合間的關(guān)系及其運算 (1)符號“ ”是表示元素與集合之間關(guān)系的,立體幾何中的體現 點(diǎn)與直線(xiàn)(面)的關(guān)系 ; 符號“ ”是表示集合與集合之間關(guān)系的,立體幾何中的體現 面與直線(xiàn)(面)的關(guān)系 。
(2) ; ; (3)對于任意集合 ,則: ① ; ; ; ② ; ; ; ; ③ ; ; (4)①若 為偶數,則 ;若 為奇數,則 ; ②若 被3除余0,則 ;若 被3除余1,則 ;若 被3除余2,則 ; 三、集合中元素的個(gè)數的計算: (1)若集合 中有 個(gè)元素,則集合 的所有不同的子集個(gè)數為_(kāi)________,所有真子集的個(gè)數是__________,所有非空真子集的個(gè)數是 。 (2) 中元素的個(gè)數的計算公式為: ; (3)韋恩圖的運用: 四、滿(mǎn)足條件 , 滿(mǎn)足條件 , 若 ;則 是 的充分非必要條件 ; 若 ;則 是 的必要非充分條件 ; 若 ;則 是 的充要條件 ; 若 ;則 是 的既非充分又非必要條件 ; 五、原命題與逆否命題,否命題與逆命題具有相同的 ; 注意:“若 ,則 ”在解題中的運用, 如:“ ”是“ ”的 條件。
六、反證法:當證明“若 ,則 ”感到困難時(shí),改證它的等價(jià)命題“若 則 ”成立, 步驟:1、假設結論反面成立;2、從這個(gè)假設出發(fā),推理論證,得出矛盾;3、由矛盾判斷假設不成立,從而肯定結論正確。 矛盾的來(lái)源:1、與原命題的條件矛盾;2、導出與假設相矛盾的命題;3、導出一個(gè)恒假命題。
適用與待證命題的結論涉及“不可能”、“不是”、“至少”、“至多”、“唯一”等字眼時(shí)。 正面詞語(yǔ) 等于 大于 小于 是 都是 至多有一個(gè) 否定 正面詞語(yǔ) 至少有一個(gè) 任意的 所有的 至多有n個(gè) 任意兩個(gè) 否定 二、函數 一、映射與函數: (1)映射的概念: (2)一一映射:(3)函數的概念: 如:若 , ;問(wèn): 到 的映射有 個(gè), 到 的映射有 個(gè); 到 的函數有 個(gè),若 ,則 到 的一一映射有 個(gè)。
函數 的圖象與直線(xiàn) 交點(diǎn)的個(gè)數為 個(gè)。 二、函數的三要素: , , 。
相同函數的判斷方法:① ;② (兩點(diǎn)必須同時(shí)具備) (1)函數解析式的求法: ①定義法(拼湊):②換元法:③待定系數法:④賦值法: (2)函數定義域的求法: ① ,則 ; ② 則 ; ③ ,則 ; ④如: ,則 ; ⑤含參問(wèn)題的定義域要分類(lèi)討論; 如:已知函數 的定義域是 ,求 的定義域。 ⑥對于實(shí)際問(wèn)題,在求出函數解析式后;必須求出其定義域,此時(shí)的定義域要根據實(shí)際意義來(lái)確定。
如:已知扇形的周長(cháng)為20,半徑為 ,扇形面積為 ,則 ;定義域為 。 (3)函數值域的求法: ①配方法:轉化為二次函數,利用二次函數的特征來(lái)求值;常轉化為型如: 的形式; ②逆求法(反求法):通過(guò)反解,用 來(lái)表示 ,再由 的取值范圍,通過(guò)解不等式,得出 的取值范圍;常用來(lái)解,型如: ; ④換元法:通過(guò)變量代換轉化為能求值域的函數,化歸思想; ⑤三角有界法:轉化為只含正弦、余弦的函數,運用三角函數有界性來(lái)求值域; ⑥基本不等式法:轉化成型如: ,利用平均值不等式公式來(lái)求值域; ⑦單調性法:函數為單調函數,可根據函數的單調性求值域。
⑧數形結合:根據函數的幾何圖形,利用數型結合的方法來(lái)求值域。 求下列函數的值域:① (2種方法); ② (2種方法);③ (2種方法); 三、函數的性質(zhì): 函數的單調性、奇偶性、周期性 單調性:定義:注意定義是相對與某個(gè)具體的區間而言。
判定方法有:定義法(作差比較和作商比較) 導數法(適用于多項式函數) 復合函數法和圖像法。 應用:比較大小,證明不等式,解不等式。
奇偶性:定義:注意區間是否關(guān)于原點(diǎn)對稱(chēng),比較f(x) 與f(-x)的關(guān)系。f(x) -f(-x)=0 f(x) =f(-x) f(x)為偶函數; f(x)+f(-x)=0 f(x) =-f(-x) f(x)為奇函數。
判別方法:定義法, 圖像法 ,復合函數法 應用:把函數值進(jìn)行轉化求解。 周期性:定義:若函數f(x)對定義域內的任意x滿(mǎn)足:f(x+T)=f(x),則T為函數f(x)的周期。
其他:若函數f(x)對定義域內的任意x滿(mǎn)足:f(x+a)=f(x-a),則2a為函數f(x)的周期. 應用:求函數值和某個(gè)區間上的函數解析式。 四、圖形變換:函數圖像變換:(重點(diǎn))要求掌握常見(jiàn)基本函數的圖像,掌握函數圖像變換的一般規律。
常見(jiàn)圖像變化規律:(注意平移變化能夠用向量的語(yǔ)言解釋?zhuān)桶聪蛄科揭坡?lián)系起來(lái)思考) 平移變換 y=f(x)→y=f(x+a),y=f(x)+b 注意:(ⅰ)有系數,要先提取系數。如:把函數y=f(2x)經(jīng)過(guò) 平移得到函數y=f(2x+4)的圖象。
(ⅱ)會(huì )結合向量的平移,理解按照向量 (m,n)平移的意義。 對稱(chēng)變換 y=f(x)→y=f(-x),關(guān)于y軸對稱(chēng) y=f(x)→y=-f(x) ,關(guān)于x軸對稱(chēng) y=f(x)→y=f|x|,把x軸上方的圖象保留,x軸下方的圖象關(guān)于x軸對稱(chēng) y=f(x)→y=|f。
高中數學(xué)重點(diǎn)知識與結論分類(lèi)解析一、集合與簡(jiǎn)易邏輯1.集合的元素具有確定性、無(wú)序性和互異性.2.對集合 , 時(shí),必須注意到“極端”情況: 或 ;求集合的子集時(shí)是否注意到 是任何集合的子集、是任何非空集合的真子集.3.對于含有 個(gè)元素的有限集合 ,其子集、真子集、非空子集、非空真子集的個(gè)數依次為 4.“交的補等于補的并,即 ”;“并的補等于補的交,即 ”.5.判斷命題的真假 關(guān)鍵是“抓住關(guān)聯(lián)字詞”;注意:“不‘或’即‘且’,不‘且’即‘或’”.6.“或命題”的真假特點(diǎn)是“一真即真,要假全假”;“且命題”的真假特點(diǎn)是“一假即假,要真全真”;“非命題”的真假特點(diǎn)是“一真一假”.7.四種命題中“‘逆’者‘交換’也”、“‘否’者‘否定’也”.原命題等價(jià)于逆否命題,但原命題與逆命題、否命題都不等價(jià).反證法分為三步:假設、推矛、得果.注意:命題的否定是“命題的非命題,也就是‘條件不變,僅否定結論’所得命題”,但否命題是“既否定原命題的條件作為條件,又否定原命題的結論作為結論的所得命題” ?.8.充要條件二、函 數1.指數式、對數式,2.(1)映射是“‘全部射出’加‘一箭一雕’”;映射中第一個(gè)集合 中的元素必有像,但第二個(gè)集合 中的元素不一定有原像( 中元素的像有且僅有下一個(gè),但 中元素的原像可能沒(méi)有,也可任意個(gè));函數是“非空數集上的映射”,其中“值域是映射中像集 的子集”.(2)函數圖像與 軸垂線(xiàn)至多一個(gè)公共點(diǎn),但與 軸垂線(xiàn)的公共點(diǎn)可能沒(méi)有,也可任意個(gè).(3)函數圖像一定是坐標系中的曲線(xiàn),但坐標系中的曲線(xiàn)不一定能成為函數圖像.3.單調性和奇偶性(1)奇函數在關(guān)于原點(diǎn)對稱(chēng)的區間上若有單調性,則其單調性完全相同.偶函數在關(guān)于原點(diǎn)對稱(chēng)的區間上若有單調性,則其單調性恰恰相反.注意:(1)確定函數的奇偶性,務(wù)必先判定函數定義域是否關(guān)于原點(diǎn)對稱(chēng).確定函數奇偶性的常用方法有:定義法、圖像法等等.對于偶函數而言有: .(2)若奇函數定義域中有0,則必有 .即 的定義域時(shí), 是 為奇函數的必要非充分條件.(3)確定函數的單調性或單調區間,在解答題中常用:定義法(取值、作差、鑒定)、導數法;在選擇、填空題中還有:數形結合法(圖像法)、特殊值法等等.(4)既奇又偶函數有無(wú)窮多個(gè)( ,定義域是關(guān)于原點(diǎn)對稱(chēng)的任意一個(gè)數集).(7)復合函數的單調性特點(diǎn)是:“同性得增,增必同性;異性得減,減必異性”.復合函數的奇偶性特點(diǎn)是:“內偶則偶,內奇同外”.復合函數要考慮定義域的變化。
(即復合有意義)4.對稱(chēng)性與周期性(以下結論要消化吸收,不可強記)(1)函數 與函數 的圖像關(guān)于直線(xiàn) ( 軸)對稱(chēng).推廣一:如果函數 對于一切 ,都有 成立,那么 的圖像關(guān)于直線(xiàn) (由“ 和的一半 確定”)對稱(chēng).推廣二:函數 , 的圖像關(guān)于直線(xiàn) (由 確定)對稱(chēng).(2)函數 與函數 的圖像關(guān)于直線(xiàn) ( 軸)對稱(chēng).(3)函數 與函數 的圖像關(guān)于坐標原點(diǎn)中心對稱(chēng).推廣:曲線(xiàn) 關(guān)于直線(xiàn) 的對稱(chēng)曲線(xiàn)是 ;曲線(xiàn) 關(guān)于直線(xiàn) 的對稱(chēng)曲線(xiàn)是 .(5)類(lèi)比“三角函數圖像”得:若 圖像有兩條對稱(chēng)軸 ,則 必是周期函數,且一周期為 .如果 是R上的周期函數,且一個(gè)周期為 ,那么 .特別:若 恒成立,則 .若 恒成立,則 .若 恒成立,則 .三、數 列1.數列的通項、數列項的項數,遞推公式與遞推數列,數列的通項與數列的前 項和公式的關(guān)系: (必要時(shí)請分類(lèi)討論).注意: ; .2.等差數列 中:(1)等差數列公差的取值與等差數列的單調性.(2) ; .(3) 、也成等差數列.(4)兩等差數列對應項和(差)組成的新數列仍成等差數列.(5) 仍成等差數列.(8)“首正”的遞等差數列中,前 項和的最大值是所有非負項之和;“首負”的遞增等差數列中,前 項和的最小值是所有非正項之和;(9)有限等差數列中,奇數項和與偶數項和的存在必然聯(lián)系,由數列的總項數是偶數還是奇數決定.若總項數為偶數,則“偶數項和”-“奇數項和”=總項數的一半與其公差的積;若總項數為奇數,則“奇數項和”-“偶數項和”=此數列的中項.(10)兩數的等差中項惟一存在.在遇到三數或四數成等差數列時(shí),常考慮選用“中項關(guān)系”轉化求解.(11)判定數列是否是等差數列的主要方法有:定義法、中項法、通項法、和式法、圖像法(也就是說(shuō)數列是等差數列的充要條件主要有這五種形式).3.等比數列 中:(1)等比數列的符號特征(全正或全負或一正一負),等比數列的首項、公比與等比數列的單調性.(3) 、、成等比數列; 成等比數列 成等比數列.(4)兩等比數列對應項積(商)組成的新數列仍成等比數列.(8)“首大于1”的正值遞減等比數列中,前 項積的最大值是所有大于或等于1的項的積;“首小于1”的正值遞增等比數列中,前 項積的最小值是所有小于或等于1的項的積;(9)有限等比數列中,奇數項和與偶數項和的存在必然聯(lián)系,由數列的總項數是偶數還是奇數決定.若總項數為偶數,則“偶數項和”=“奇數項和”與“公比”的積;若總項數為奇數,則“奇數項和”=“首項”加上“公比”與“偶數項和”積的和.(10)并非任何兩數總有等比中項.僅當實(shí)數 同號時(shí),實(shí)數 存在等比中項.對同號兩實(shí)數 的等比中項不僅存在,而且。
數學(xué)是一門(mén)嚴謹的學(xué)科,數學(xué)計算的最重要基礎是“阿拉伯數字”,而這個(gè)名稱(chēng)卻是一個(gè)歷史的錯誤。其實(shí),這些數字從“1”到“0”與十進(jìn)位法,都是源自古印度。由于這些數字由阿拉伯人傳到了西方,于是西方人便將這些數字稱(chēng)為“阿拉伯數字”,以后,一傳十,十傳百,世界各地也都認同了這個(gè)說(shuō)法,“阿拉伯數字”也就約定俗成了。
古代印度數學(xué)最大的成就之一是數碼的發(fā)明。2世紀時(shí)古代印度人發(fā)明了1至9的數碼,用梵文字頭來(lái)表示。
除1至9的數碼外,印度人還發(fā)明了零號。在8世紀算術(shù)書(shū)中的一些算題,有小點(diǎn)“。”的記號,叫做“空”。“空”有兩個(gè)意思,或為尚不清楚的東西,有待于發(fā)現填補上去;或為位值記數法,如3與7中間空一格為3口7,表示307,為了避免不清楚,空格外加上小點(diǎn)為3.7,也就是說(shuō)十位數一無(wú)所有,這就相當于現在的零號。小點(diǎn)寫(xiě)作0,至少在9世紀中葉就定下了。
高考的重點(diǎn)一般在 常用函數 常用雙曲線(xiàn)+直線(xiàn) 數列 三角
二項式定理 立體幾何 排列組合加概率等其他一些知識是比較小的部分
重要的是基礎 高一的話(huà)上課的基本解題方法一定要熟練掌握 并且不能忘記 到了高三再練習就很麻煩了 還有不要忽視概念 往往很多題目是考概念的
難度方面要視文理科而定 但是70%題目肯定用基本知識就能做的 20%需要結合各種知識并且動(dòng)腦 真正有難度的題目只有10%
如果數學(xué)是弱項就一定要重視知識的反復整理和練習 不一定要以制做題 而是要把做錯的題目和典型的題目反復練習 基本的方法和解題思路是很重要的
還有就是 不能放棄 數學(xué)學(xué)科要有明顯提高一定有一個(gè)過(guò)程 一般是半個(gè)學(xué)期到一個(gè)學(xué)期的時(shí)間 如果一旦放棄就功虧一簣了
高中數學(xué)主要是代數,三角,幾何三個(gè)部分.內容相互獨立但是解題時(shí)常互相提供方法,等高三你就知道了.
必修的:
代數部分有:
1 集合與簡(jiǎn)易邏輯.其實(shí)就是集合,命題,充要條件三點(diǎn),很淺顯高考也不會(huì )單出這類(lèi)的題
2 函數.先是對于函數的描述,有映射定義域對應法則植域;然后是性質(zhì),三個(gè),單調性奇偶性周期性;最后是指數函數還有對數函數,是兩個(gè)基本的函數,要研究他們的性質(zhì)和圖象
3 三角.三角其實(shí)就是個(gè)工具,比較煩人,公式背下來(lái)再多練練用的滾瓜爛熟就行了
4 幾何.也就是平面解析幾何,用坐標法定量的研究平面幾何問(wèn)題.學(xué)幾個(gè)定義,然后是直線(xiàn)的方程,圓的方程,圓錐曲線(xiàn)方程.
哎對不起啊現在我也高三總復習了一說(shuō)就隨口說(shuō)了這么多,其實(shí)你不用知道那么多,三年呢自然而然就都學(xué)了.
現在建議你最好能對數學(xué)感興趣,自己暗示自己一下;上課認真聽(tīng)講,把知識記牢,免得以后補很麻煩;學(xué)會(huì )總結,抓住知識之間的聯(lián)系
數學(xué)是必考科目之一,故從初一開(kāi)始就要認真地學(xué)習數學(xué)。那么,怎樣才能學(xué)好數學(xué)呢?現介紹幾種方法以供參考:
一、課內重視聽(tīng)講,課后及時(shí)復習。
新知識的接受,數學(xué)能力的培養主要在課堂上進(jìn)行,所以要特點(diǎn)重視課內的學(xué)習效率,尋求正確的學(xué)習方法。上課時(shí)要緊跟老師的思路,積極展開(kāi)思維預測下面的步驟,比較自己的解題思路與教師所講有哪些不同。特別要抓住基礎知識和基本技能的學(xué)習,課后要及時(shí)復習不留疑點(diǎn)。首先要在做各種習題之前將老師所講的知識點(diǎn)回憶一遍,正確掌握各類(lèi)公式的推理過(guò)程,慶盡量回憶而不采用不清楚立即翻書(shū)之舉。認真獨立完成作業(yè),勤于思考,從某種意義上講,應不造成不懂即問(wèn)的學(xué)習作風(fēng),對于有些題目由于自己的思路不清,一時(shí)難以解出,應讓自己冷靜下來(lái)認真分析題目,盡量自己解決。在每個(gè)階段的學(xué)習中要進(jìn)行整理和歸納總結,把知識的點(diǎn)、線(xiàn)、面結合起來(lái)交織成知識網(wǎng)絡(luò ),納入自己的知識體系。
二、適當多做題,養成良好的解題習慣。
要想學(xué)好數學(xué),多做題目是難免的,熟悉掌握各種題型的解題思路。剛開(kāi)始要從基礎題入手,以課本上的習題為準,反復練習打好基礎,再找一些課外的習題,以幫助開(kāi)拓思路,提高自己的分析、解決能力,掌握一般的解題規律。對于一些易錯題,可備有錯題集,寫(xiě)出自己的解題思路和正確的解題過(guò)程兩者一起比較找出自己的錯誤所在,以便及時(shí)更正。在平時(shí)要養成良好的解題習慣。讓自己的精力高度集中,使大腦興奮,思維敏捷,能夠進(jìn)入最佳狀態(tài),在考試中能運用自如。實(shí)踐證明:越到關(guān)鍵時(shí)候,你所表現的解題習慣與平時(shí)練習無(wú)異。如果平時(shí)解題時(shí)隨便、粗心、大意等,往往在大考中充分暴露,故在平時(shí)養成良好的解題習慣是非常重要的。
三、調整心態(tài),正確對待考試。
首先,應把主要精力放在基礎知識、基本技能、基本方法這三個(gè)方面上,因為每次考試占絕大部分的也是基礎性的題目,而對于那些難題及綜合性較強的題目作為調劑,認真思考,盡量讓自己理出頭緒,做完題后要總結歸納。調整好自己的心態(tài),使自己在任何時(shí)候鎮靜,思路有條不紊,克服浮躁的情緒。特別是對自己要有信心,永遠鼓勵自己,除了自己,誰(shuí)也不能把我打倒,要有自己不垮,誰(shuí)也不能打垮我的自豪感。
在考試前要做好準備,練練常規題,把自己的思路展開(kāi),切忌考前去在保證正確率的前提下提高解題速度。對于一些容易的基礎題要有十二分把握拿全分;對于一些難題,也要盡量拿分,考試中要學(xué)會(huì )嘗試得分,使自己的水平正常甚至超常發(fā)揮。
由此可見(jiàn),要把數學(xué)學(xué)好就得找到適合自己的學(xué)習方法,了解數學(xué)學(xué)科的特點(diǎn),使自己進(jìn)入數學(xué)的廣闊天地中去。
聲明:本網(wǎng)站尊重并保護知識產(chǎn)權,根據《信息網(wǎng)絡(luò )傳播權保護條例》,如果我們轉載的作品侵犯了您的權利,請在一個(gè)月內通知我們,我們會(huì )及時(shí)刪除。
蜀ICP備2020033479號-4 Copyright ? 2016 學(xué)習?shū)B(niǎo). 頁(yè)面生成時(shí)間:2.626秒