第一章 實數(shù) ★重點★ 實數(shù)的有關概念及性質,實數(shù)的運算 ☆內容提要☆ 一、重要概念 1.數(shù)的分類及概念 數(shù)系表: 說明:“分類”的原則:1)相稱(不重、不漏) 2)有標準 2.非負數(shù):正實數(shù)與零的統(tǒng)稱。
(表為:x≥0) 常見的非負數(shù)有: 性質:若干個非負數(shù)的和為0,則每個非負擔數(shù)均為0。 3.倒數(shù): ①定義及表示法 ②性質:A.a≠1/a(a≠±1);B.1/a中,a≠0;C.01;a>1時,1/a4.相反數(shù): ①定義及表示法 ②性質:A.a≠0時,a≠-a;B.a與-a在數(shù)軸上的位置;C.和為0,商為-1。
5.數(shù)軸:①定義(“三要素”) ②作用:A.直觀地比較實數(shù)的大小;B.明確體現(xiàn)絕對值意義;C.建立點與實數(shù)的一一對應關系。 6.奇數(shù)、偶數(shù)、質數(shù)、合數(shù)(正整數(shù)—自然數(shù)) 定義及表示: 奇數(shù):2n-1 偶數(shù):2n(n為自然數(shù)) 7.絕對值:①定義(兩種): 代數(shù)定義: 幾何定義:數(shù)a的絕對值頂?shù)膸缀我饬x是實數(shù)a在數(shù)軸上所對應的點到原點的距離。
②│a│≥0,符號“││”是“非負數(shù)”的標志;③數(shù)a的絕對值只有一個;④處理任何類型的題目,只要其中有“││”出現(xiàn),其關鍵一步是去掉“││”符號。 二、實數(shù)的運算 1. 運算法則(加、減、乘、除、乘方、開方) 2. 運算定律(五個—加法[乘法]交換律、結合律;[乘法對加法的] 分配律) 3. 運算順序:A.高級運算到低級運算;B.(同級運算)從“左” 到“右”(如5÷ *5);C.(有括號時)由“小”到“中”到“大”。
三、應用舉例(略) 附:典型例題 1. 已知:a、b、x在數(shù)軸上的位置如下圖,求證:│x-a│+│x-b│ =b-a. 2.已知:a-b=-2且ab<0,(a≠0,b≠0),判斷a、b的符號。 第二章 代數(shù)式 ★重點★代數(shù)式的有關概念及性質,代數(shù)式的運算 ☆內容提要☆ 一、重要概念 分類: 1.代數(shù)式與有理式 用運算符號把數(shù)或表示數(shù)的字母連結而成的式子,叫做代數(shù)式。
單獨 的一個數(shù)或字母也是代數(shù)式。 整式和分式統(tǒng)稱為有理式。
2.整式和分式 含有加、減、乘、除、乘方運算的代數(shù)式叫做有理式。 沒有除法運算或雖有除法運算但除式中不含有字母的有理式叫做整式。
有除法運算并且除式中含有字母的有理式叫做分式。 3.單項式與多項式 沒有加減運算的整式叫做單項式。
(數(shù)字與字母的積—包括單獨的一個數(shù)或字母) 幾個單項式的和,叫做多項式。 說明:①根據(jù)除式中有否字母,將整式和分式區(qū)別開;根據(jù)整式中有否加減運算,把單項式、多項式區(qū)分開。
②進行代數(shù)式分類時,是以所給的代數(shù)式為對象,而非以變形后的代數(shù)式為對象。劃分代數(shù)式類別時,是從外形來看。
如, =x, =│x│等。 4.系數(shù)與指數(shù) 區(qū)別與聯(lián)系:①從位置上看;②從表示的意義上看 5.同類項及其合并 條件:①字母相同;②相同字母的指數(shù)相同 合并依據(jù):乘法分配律 6.根式 表示方根的代數(shù)式叫做根式。
含有關于字母開方運算的代數(shù)式叫做無理式。 注意:①從外形上判斷;②區(qū)別: 、是根式,但不是無理式(是無理數(shù))。
7.算術平方根 ⑴正數(shù)a的正的平方根( [a≥0—與“平方根”的區(qū)別]); ⑵算術平方根與絕對值 ① 聯(lián)系:都是非負數(shù), =│a│ ②區(qū)別:│a│中,a為一切實數(shù); 中,a為非負數(shù)。 8.同類二次根式、最簡二次根式、分母有理化 化為最簡二次根式以后,被開方數(shù)相同的二次根式叫做同類二次根式。
滿足條件:①被開方數(shù)的因數(shù)是整數(shù),因式是整式;②被開方數(shù)中不含有開得盡方的因數(shù)或因式。 把分母中的根號劃去叫做分母有理化。
9.指數(shù) ⑴ ( —冪,乘方運算) ① a>0時, >0;②a0(n是偶數(shù)), ⑵零指數(shù): =1(a≠0) 負整指數(shù): =1/ (a≠0,p是正整數(shù)) 二、運算定律、性質、法則 1.分式的加、減、乘、除、乘方、開方法則 2.分式的性質 ⑴基本性質: = (m≠0) ⑵符號法則: ⑶繁分式:①定義;②化簡方法(兩種) 3.整式運算法則(去括號、添括號法則) 4.冪的運算性質:① · = ;② ÷ = ;③ = ;④ = ;⑤ 技巧: 5.乘法法則:⑴單*單;⑵單*多;⑶多*多。 6.乘法公式:(正、逆用) (a+b)(a-b)= (a±b) = 7.除法法則:⑴單÷單;⑵多÷單。
8.因式分解:⑴定義;⑵方法:A.提公因式法;B.公式法;C.十字相乘法;D.分組分解法;E.求根公式法。 9.算術根的性質: = ; ; (a≥0,b≥0); (a≥0,b>0)(正用、逆用) 10.根式運算法則:⑴加法法則(合并同類二次根式);⑵乘、除法法則;⑶分母有理化:A. ;B. ;C. . 11.科學記數(shù)法: (1≤a三、應用舉例(略) 四、數(shù)式綜合運算(略) 第三章 統(tǒng)計初步 ★重點★ ☆ 內容提要☆ 一、重要概念 1.總體:考察對象的全體。
2.個體:總體中每一個考察對象。 3.樣本:從總體中抽出的一部分個體。
4.樣本容量:樣本中個體的數(shù)目。 5.眾數(shù):一組數(shù)據(jù)中,出現(xiàn)次數(shù)最多的數(shù)據(jù)。
6.中位數(shù):將一組數(shù)據(jù)按大小依次排列,處在最中間位置的一個數(shù)(或最中間位置的兩個數(shù)據(jù)的平均數(shù)) 二、計算方法 1.樣本平均數(shù):⑴ ;⑵若 , ,…, ,則 (a—常數(shù), , ,…, 接近較整的常數(shù)a);⑶加權平均數(shù): ;⑷平均數(shù)是刻劃數(shù)據(jù)的集中趨勢(集中位置)的特征數(shù)。通常用樣本平均數(shù)去估計總體平均數(shù),樣本容量越大,估計越準確。
2.樣本方差:⑴ ;⑵若 , ,…, ,則 (a—接近 、、…、的平均數(shù)的較“整”的常數(shù));若 、、…、較“小”較“整”,則 ;。
小學數(shù)學四年級前四個單元知識點總結
1、路程速度時間公式:s=vt v=s÷t t=s÷v
2、正方形周長公式:C=4a
3、正方形面積公式:S=a2
4、長方形周長公式:C=2(a+b)
5、長方形面積公式:S=ab
6、加法交換律:a+b=b+a
7、加法結合律:a+b+c=a+(b+c)
8、乘法交換律:a·b=b·a
9、乘法結合律:〔a·b〕·c=a·〔b·c〕
10、乘法分配律:〔a+b〕·c=a·c+b·c
11、角的大小分類,從小到大是:銳角、直角、鈍角、平角、周角
12、銳角是小于90度的角,直角是90度,鈍角是大于90度而小于平角的角,平角是180度的角,周角是360度的角。
13、三角形按角分類:銳角三角形,直角三角形,鈍角三角形
14、三個角都是銳角是銳角的三角形叫銳角三角形;有一個角是直角的三角形叫直角三角形;有一個角是鈍角的三角形叫鈍角三角形。
15、三角形按邊分類有:不等邊三角形,等腰三角形,等邊三角形
16、從三角形的一個頂點到它的對邊作一條垂線,頂點和垂足之間的線段叫做三角形的高,這條對邊叫做三角形的底。
17、小數(shù)的計數(shù)單位是十分之一,百分之一,千分之一--------記作0.1,0.01,0.001-----
18、小數(shù)的性質:小數(shù)的末尾添上“0”或去掉“0”,小數(shù)的大小不變。
20、1平角=2直角 1周角=2平角=4直角
21、三角形具有穩(wěn)定性
22、三角形任意兩邊之和大于第三邊
23、三角形的內角和是180度
24、學會畫角
25、會比較小數(shù)的大小
26、單位換算
長度單位:1米=10分米 1分米=10厘米 1厘米=10毫米 1米=10分米=100厘米=1000毫米
質量單位:1千克=1000克 1噸=1000千克=1000000克
錢的換算:1元=10角=100分 1角=10分
時間單位:1時=60分=3600秒 1分=60秒
1年=12月=365天或366天 1天=24小時
一三五七八十臘,三十一天永不差。四六九十一三十,平年二月二十八,閏年二月二十九。
面積單位:1平方米=100平方分米 1平方分米=100平方厘米 1平方米=10000平方厘米
1公頃=10000平方米 1平方千米=100公頃=1000000平方米
初中的數(shù)學主要是分代數(shù)和幾何兩大部分,兩者在中考中所占的比例,代數(shù)略大于幾何
代數(shù)主要有以下幾點:
1,有理數(shù)的運算,主要講有理數(shù)的三級運算(加減乘除和乘方開方)在這里要注意數(shù)字和字母的符號意識,就是,不要受小學數(shù)字的影響,一看見字母就不會做題了。
2,整式的三級運算,注意符號意識的培養(yǎng),還有就是因式分解,這和整式的乘法是互換的,注意像平方差公式和完全平方公式的正用、逆用和變形用。
3,方程,會一元一次、二元一次、三元一次、一元二次四種方程的解法和應用,記住,方程是一種方法,是一種解題的手段。
4,函數(shù),會識別一次函數(shù)、二次函數(shù)、反比例函數(shù)的圖像,記住他們的特征,要會根據(jù)條件來應用。尤其要注意二次函數(shù),這是中考的重點和難點。應用題里會拿它來出一道難題的
幾何主要有以下幾點:
1,識別各種平面圖形和立體圖形,這你應該非常熟悉。
2,圖形的平移、旋轉和軸對稱,這個考察你的空間想象的能力,多做一些題。
3,三角形的全等和相似,要會證明,注意要有完整的過程和嚴密的步驟,背過證明三角形全等的五種方法和證明相似的四種方法;還有像等腰三角形、直角三角形和黃金三角形的性質,要會應用,這在證明題中會有很大的幫助。
4,四邊形,把握好平行四邊形、長方形、正方形、菱形和梯形的概念,選擇體里會拿著它們之間的微小差異而大做文章,注意它們的判定和性質,證明題里也會考到。
5,圓,我這里沒有細學,因為這里不是我們中考的重點,但是圓的難度會很大,它的知識點很多、很碎,圓的難題就是由許許多多細小的點構成的。
我一直都認為數(shù)學不是靠做題做出來的,方法永遠比單純做題更重要。
如果僅僅記住了一道題,而不仔細思考它的每一步是怎樣想出來的話,做再多的題也沒用,反而會浪費很多的時間。我的習慣做法是,首先上課認真聽,并不要求把老師講的每道題都記下來(這樣復習時要花很多時間),只要是自己已經懂、解題思路也與老師一樣的題目就大可不必再記。
關鍵要記那些自己不懂或自己已懂但老師的方法更簡便的題目。記的時候也要注意方法,最好不要在老師講的時候同時記,這樣老師講的一些沒法寫出來的思路就有可能被漏掉。
教我數(shù)學的唐江津老師特別強調我們要掌握數(shù)學的解題思路,他不提倡我們隨便地做些繁雜的課外習題,只要求我們把他布置的題目做好就行。上課時,他常常會在講完一道題目時再留出一段時間讓我們記筆記,使我們聽記兩不誤。
這樣,不僅使我們節(jié)省了不少時間,還掌握了許多有效的解題方法。? 接下來是課后。
數(shù)學不像別的科目,一天不練就會生疏一些。當天的內容一定要當天復習,否則時間一長就容易忘記,要想再趕上就會比較吃力。
復習主要靠做練習來鞏固,也不必漫無邊際地做,主要是老師布置的練習一定要完成。如果學有余力的話,再去找課外題來做,否則就不必強求。
做不出的題第二天老師講時一定要做好筆記,理清思路,并且當天就要把它掌握,隔幾天再復習幾遍,直到記牢為止。到考前那幾天,數(shù)學還是以看題為主。
關鍵是看自己平時做錯或者不會做的題目(平時就應注意把這類題用紅筆標出),記住解題方法。如果要做題的話,就做最近各地的模擬試題,那些題一般針對性更強些。
總之還是三個字——不要斷。堅持每天都花一點時間在數(shù)學上,肯定會有提高。
? 對于文科生來說,數(shù)學是一個比較大的挑戰(zhàn)。但我總覺得,大部分人還是心理上的問題比較多。
因為以前數(shù)學不好,就對數(shù)學失去了信心。如果是這樣的話,不妨養(yǎng)成每天做一點題的習慣,多熟悉一些題型,培養(yǎng)數(shù)學的思維方式。
更重要的是,要常常對自己說:“付出總會有回報。我已經把大部分時間都花在數(shù)學上了,我的付出一定會和我的所得呈正比的。”
? 數(shù)學是必考科目之一,故從初一開始就要認真地學習數(shù)學。那么,怎樣才能學好數(shù)學呢?現(xiàn)介紹幾種方法以供參考: 一、課內重視聽講,課后及時復習。
新知識的接受,數(shù)學能力的培養(yǎng)主要在課堂上進行,所以要特點重視課內的學習效率,尋求正確的學習方法。上課時要緊跟老師的思路,積極展開思維預測下面的步驟,比較自己的解題思路與教師所講有哪些不同。
特別要抓住基礎知識和基本技能的學習,課后要及時復習不留疑點。首先要在做各種習題之前將老師所講的知識點回憶一遍,正確掌握各類公式的推理過程,慶盡量回憶而不采用不清楚立即翻書之舉。
認真獨立完成作業(yè),勤于思考,從某種意義上講,應不造成不懂即問的學習作風,對于有些題目由于自己的思路不清,一時難以解出,應讓自己冷靜下來認真分析題目,盡量自己解決。在每個階段的學習中要進行整理和歸納總結,把知識的點、線、面結合起來交織成知識網(wǎng)絡,納入自己的知識體系。
二、適當多做題,養(yǎng)成良好的解題習慣。 要想學好數(shù)學,多做題目是難免的,熟悉掌握各種題型的解題思路。
剛開始要從基礎題入手,以課本上的習題為準,反復練習打好基礎,再找一些課外的習題,以幫助開拓思路,提高自己的分析、解決能力,掌握一般的解題規(guī)律。對于一些易錯題,可備有錯題集,寫出自己的解題思路和正確的解題過程兩者一起比較找出自己的錯誤所在,以便及時更正。
在平時要養(yǎng)成良好的解題習慣。讓自己的精力高度集中,使大腦興奮,思維敏捷,能夠進入最佳狀態(tài),在考試中能運用自如。
實踐證明:越到關鍵時候,你所表現(xiàn)的解題習慣與平時練習無異。如果平時解題時隨便、粗心、大意等,往往在大考中充分暴露,故在平時養(yǎng)成良好的解題習慣是非常重要的。
三、調整心態(tài),正確對待考試。 首先,應把主要精力放在基礎知識、基本技能、基本方法這三個方面上,因為每次考試占絕大部分的也是基礎性的題目,而對于那些難題及綜合性較強的題目作為調劑,認真思考,盡量讓自己理出頭緒,做完題后要總結歸納。
調整好自己的心態(tài),使自己在任何時候鎮(zhèn)靜,思路有條不紊,克服浮躁的情緒。特別是對自己要有信心,永遠鼓勵自己,除了自己,誰也不能把我打倒,要有自己不垮,誰也不能打垮我的自豪感。
在考試前要做好準備,練練常規(guī)題,把自己的思路展開,切忌考前去在保證正確率的前提下提高解題速度。對于一些容易的基礎題要有十二分把握拿全分;對于一些難題,也要盡量拿分,考試中要學會嘗試得分,使自己的水平正常甚至超常發(fā)揮。
由此可見,要把數(shù)學學好就得找到適合自己的學習方法,了解數(shù)學學科的特點,使自己進入數(shù)學的廣闊天地中去。
一、具備基礎的數(shù)學思維。
數(shù)學思維對孩子的數(shù)學學習是很重要的,家長要注意在生活中就給孩子培養(yǎng)數(shù)學思維,常見的做法就是根據(jù)生活中的實際,讓孩子借助這些實際事物,學習到基本的數(shù)、量、形等。
二、培養(yǎng)孩子的數(shù)學學習習慣。
數(shù)學基礎中,數(shù)學學習習慣的培養(yǎng)也是很重要的,家長要注意在孩子每天的生活中,都和孩子一起進行一些有意思的小計算,這些小計算會讓孩子漸漸地習慣上數(shù)學學習。
三、提高孩子的智力。
在孩子玩的玩具中,以及孩子玩的游戲中,家長都可以給孩子帶來數(shù)學教育,這些數(shù)學教育會讓孩子的智力得到提升,這也就是所謂的給孩子益智,所以,家長要注意抓住每次機會。
聲明:本網(wǎng)站尊重并保護知識產權,根據(jù)《信息網(wǎng)絡傳播權保護條例》,如果我們轉載的作品侵犯了您的權利,請在一個月內通知我們,我們會及時刪除。
蜀ICP備2020033479號-4 Copyright ? 2016 學習鳥. 頁面生成時間:3.625秒