1. 符號思想
用符號化的語(yǔ)言(包括字母、數字、圖形和各種特定的符號)來(lái)描述數學(xué)的內容,這就是符號思想。符號思想是將復雜的文字敘述用簡(jiǎn)潔明了的字母公式表示出來(lái),便于記憶,便于運用。
2. 化歸思想
化歸思想是數學(xué)中最普遍使用的一種思想方法,其基本思想是:把甲問(wèn)題的求解,化歸為乙問(wèn)題的求解,然后通過(guò)乙問(wèn)題的解反向去獲得甲問(wèn)題的解。它的基本原則是:化難為易,化生為熟,化繁為簡(jiǎn)。
3. 轉換思想
轉換思想是一種解決數學(xué)問(wèn)題的重要策略,是由一種形式變換成另一種形式的思想方法。對問(wèn)題進(jìn)行轉換時(shí),既可轉換已知條件,也可轉換問(wèn)題的結論。用轉換思想來(lái)解決數學(xué)問(wèn)題,轉換僅是第一步,第二步要對轉換后的問(wèn)題進(jìn)行求解,第三步要將轉換后問(wèn)題的解答反演成問(wèn)題的解答。
4. 類(lèi)比思想
數學(xué)上的類(lèi)比思想是指依據兩類(lèi)數學(xué)對象的相似性,將已知的一類(lèi)數學(xué)對象的性質(zhì)遷移到另一類(lèi)數學(xué)對象上去的思想。類(lèi)比思想不僅使數學(xué)知識容易理解,而且使公式的記憶變得順水推舟般自然和簡(jiǎn)潔,從而可以激發(fā)起學(xué)生的創(chuàng )造力。
5. 歸納思想
在研究一般性問(wèn)題之前,先研究幾個(gè)簡(jiǎn)單的、個(gè)別的、特殊的情況,從而歸納出一般的規律和性質(zhì),這種從特殊到一般的思維方式稱(chēng)為歸納思想。在解決數學(xué)問(wèn)題時(shí)運用歸納思想,既可發(fā)現給定問(wèn)題的解題規律,又能在實(shí)踐的基礎上發(fā)現新的客觀(guān)規律,提出新的原理或命題。因此,歸納是探索問(wèn)題、發(fā)現數學(xué)定理或公式的重要思想方法,也是思維過(guò)程中的一次飛躍。
數學(xué)常用的數學(xué)思想方法主要有:用字母表示數的思想,數形結合的思想,轉化思想 (化歸思想),分類(lèi)思想,類(lèi)比思想,函數的思想,方程的思想,無(wú)逼近思想等等。
1.用字母表示數的思想:這是基本的數學(xué)思想之一 .在代數第一冊第二章“代數初步知識”中,主要體現了這種思想。
2.數形結合:是數學(xué)中最重要的,也是最基本的思想方法之一,是解決許多數學(xué)問(wèn)題的有效思想。“數缺形時(shí)少直觀(guān),形無(wú)數時(shí)難入微”是我國著(zhù)名數學(xué)家華羅庚教授的名言,是對數形結合的作用進(jìn)行了高度的概括。
3.轉化思想:在整個(gè)初中數學(xué)中,轉化(化歸)思想一直貫穿其中。轉化思想是把一個(gè)未知(待解決)的問(wèn)題化為已解決的或易于解決的問(wèn)題來(lái)解決,如化繁為簡(jiǎn)、化難為易,化未知為已知,化高次為低次等,它是解決問(wèn)題的一種最基本的思想,它是數學(xué)基本思想方法之一。
4.分類(lèi)思想:有理數的分類(lèi)、整式的分類(lèi)、實(shí)數的分類(lèi)、角的分類(lèi),三角形的分類(lèi)、四邊形的分類(lèi)、點(diǎn)與圓的位置關(guān)系、直線(xiàn)與圓的位置關(guān)系,圓與圓的位置關(guān)系等都是通過(guò)分類(lèi)討論的。
5.類(lèi)比:類(lèi)比推理在人們認識和改造客觀(guān)世界的活動(dòng)中具有重要意義.它能觸類(lèi)旁通,啟發(fā)思考,不僅是解決日常生活中大量問(wèn)題的基礎,而且是進(jìn)行科學(xué)研究和發(fā)明創(chuàng )造的有力工具.
6.函數的思想 :辯證唯物主義認為,世界上一切事物都是處在運動(dòng)、變化和發(fā)展的過(guò)程中,這就要求我們教學(xué)中重視函數的思想方法的教學(xué)。
7.方程:是初中代數的主要內容.初中階段主要學(xué)習了幾類(lèi)方程和方程組的解法,在初中階段就要形成方程的思想.所謂方程的思想,就是突出研究已知量與未知量之間的等量關(guān)系,通過(guò)設未知數、列方程或方程組,解方程或方程組等步驟,達到求值目的的解題思路和策略,
擴展資料:
函數思想,是指用函數的概念和性質(zhì)去分析問(wèn)題、轉化問(wèn)題和解決問(wèn)題。方程思想,是從問(wèn)題的數量關(guān)系入手,運用數學(xué)語(yǔ)言將問(wèn)題中的條件轉化為數學(xué)模型(方程、不等式、或方程與不等式的混合組),然后通過(guò)解方程(組)或不等式(組)來(lái)使問(wèn)題獲解。
從問(wèn)題的整體性質(zhì)出發(fā),突出對問(wèn)題的整體結構的分析和改造,發(fā)現問(wèn)題的整體結構特征,善于用“集成”的眼光,把某些式子或圖形看成一個(gè)整體,把握它們之間的關(guān)聯(lián),進(jìn)行有目的的、有意識的整體處理。整體思想方法在代數式的化簡(jiǎn)與求值、解方程(組)、幾何解證等方面都有廣泛的應用。
參考資料:百度百科-數學(xué)思想
一、用字母表示數的思想
這是基本的數學(xué)思想之一 .在代數第一冊第二章“代數初步知識”中,主要體現了這種思想。
例如: 設甲數為a,乙數為b,用代數式表示:(1)甲乙兩數的和的2倍:2(a+b)(2)甲數的2倍與乙數的5倍差:2a-5b
二、數形結合的思想
“數形結合”是數學(xué)中最重要的,也是最基本的思想方法之一,是解決許多數學(xué)問(wèn)題的有效思想。“數缺形時(shí)少直觀(guān),形無(wú)數時(shí)難入微”是我國著(zhù)名數學(xué)家華羅庚教授的名言,是對數形結合的作用進(jìn)行了高度的概括.數學(xué)教材中下列內容體現了這種思想。
1、數軸上的點(diǎn)與實(shí)數的一一對應的關(guān)系。
2、平面上的點(diǎn)與有序實(shí)數對的一一對應的關(guān)系。
3、函數式與圖像之間的關(guān)系。
4、線(xiàn)段(角)的和、差、倍、分等問(wèn)題,充分利用數來(lái)反映形。
5、解三角形,求角度和邊長(cháng),引入了三角函數,這是用代數方法解決何問(wèn)題。
6、“圓”這一章中,圓的定義,點(diǎn)與圓、直線(xiàn)與圓、圓與圓的位置關(guān)系等都是化為數量關(guān)系來(lái)處理的。
7、統計初步中統計的第二種方法是繪制統計圖表,用這些圖表的反映數據的分情況,發(fā)展趨勢等。實(shí)際上就是通過(guò)“形”來(lái)反映數據扮布情況,發(fā)展趨勢等。實(shí)際上就是通過(guò)“形”來(lái)反映數的特征,這是數形結合思想在實(shí)際中的直接應用。
三、轉化思想 (化歸思想)
在整個(gè)初中數學(xué)中,轉化(化歸)思想一直貫穿其中。轉化思想是把一個(gè)未知(待解決)的問(wèn)題化為已解決的或易于解決的問(wèn)題來(lái)解決,如化繁為簡(jiǎn)、化難為易,化未知為已知,化高次為低次等,它是解決問(wèn)題的一種最基本的思想,它是數學(xué)基本思想方法之一。下列內容體現了這種思想:
1、分式方程的求解是分式方程轉化為前面學(xué)過(guò)的一元二次方程求解,這里把待解決的新問(wèn)題化為已解決的問(wèn)題來(lái)求解,體現了轉化思想。
2、解直角三角形;把非直角三形問(wèn)題化為直角三角形問(wèn)題;把實(shí)際問(wèn)題轉化為數學(xué)問(wèn)題。
3、證明四邊形的內角和為360度.是把四邊形轉化成兩個(gè)三角形的.同時(shí)探索多邊形的內角和也是利用轉化的思想的.
四、分類(lèi)思想
有理數的分類(lèi)、整式的分類(lèi)、實(shí)數的分類(lèi)、角的分類(lèi),三角形的分類(lèi)、四邊形的分類(lèi)、點(diǎn)與圓的位置關(guān)系、直線(xiàn)與圓的位置關(guān)系,圓與圓的位置關(guān)系等都是通過(guò)分類(lèi)討論的。
中學(xué)數學(xué)重要數學(xué)思想 函數方程思想 函數方程思想就是用函數、方程的觀(guān)點(diǎn)和方法處理變量或未知數之間的關(guān)系,從而解決問(wèn)題的一種思維方式,是很重要的數學(xué)思想。
1.函數思想:把某變化過(guò)程中的一些相互制約的變量用函數關(guān)系表達出來(lái),并研究這些量間的相互制約關(guān)系,最后解決問(wèn)題,這就是函數思想; 2.應用函數思想解題,確立變量之間的函數關(guān)系是一關(guān)鍵步驟,大體可分為下面兩個(gè)步驟:(1)根據題意建立變量之間的函數關(guān)系式,把問(wèn)題轉化為相應的函數問(wèn)題;(2)根據需要構造函數,利用函數的相關(guān)知識解決問(wèn)題;(3)方程思想:在某變化過(guò)程中,往往需要根據一些要求,確定某些變量的值,這時(shí)常常列出這些變量的方程或(方程組),通過(guò)解方程(或方程組)求出它們,這就是方程思想; 3.函數與方程是兩個(gè)有著(zhù)密切聯(lián)系的數學(xué)概念,它們之間相互滲透,很多方程的問(wèn)題需要用函數的知識和方法解決,很多函數的問(wèn)題也需要用方程的方法的支援,函數與方程之間的辯證關(guān)系,形成了函數方程思想。 數形結合思想 數形結合是中學(xué)數學(xué)中四種重要思想方法之一,對于所研究的代數問(wèn)題,有時(shí)可研究其對應幾何的性質(zhì)使問(wèn)題得以解決(以形助數);或者對于所研究的幾何問(wèn)題,可借助于對應圖形的數量關(guān)系使問(wèn)題得以解決(以數助形),這種解決問(wèn)題的方法稱(chēng)之為數形結合。
1.數形結合與數形轉化的目的是為了發(fā)揮形的生動(dòng)性和直觀(guān)性,發(fā)揮數的思路的規范性與嚴密性,兩者相輔相成,揚長(cháng)避短。 2.恩格斯是這樣來(lái)定義數學(xué)的:“數學(xué)是研究現實(shí)世界的量的關(guān)系與空間形式的科學(xué)”。
這就是說(shuō):數形結合是數學(xué)的本質(zhì)特征,宇宙間萬(wàn)事萬(wàn)物無(wú)不是數和形的和諧的統一。因此,數學(xué)學(xué)習中突出數形結合思想正是充分把握住了數學(xué)的精髓和靈魂。
3.數形結合的本質(zhì)是:幾何圖形的性質(zhì)反映了數量關(guān)系,數量關(guān)系決定了幾何圖形的性質(zhì)。 4.華羅庚先生曾指出:“數缺性時(shí)少直觀(guān),形少數時(shí)難入微;數形結合百般好,隔裂分家萬(wàn)事非。”
數形結合作為一種數學(xué)思想方法的應用大致分為兩種情形:或借助于數的精確性來(lái)闡明形的某些屬性,或者借助于形的幾何直觀(guān)性來(lái)闡明數之間的某種關(guān)系. 5.把數作為手段的數形結合主要體現在解析幾何中,歷年高考的解答題都有關(guān)于這個(gè)方面的考查(即用代數方法研究幾何問(wèn)題)。而以形為手段的數形結合在高考客觀(guān)題中體現。
6.我們要抓住以下幾點(diǎn)數形結合的解題要領(lǐng): (1) 對于研究距離、角或面積的問(wèn)題,可直接從幾何圖形入手進(jìn)行求解即可; (2) 對于研究函數、方程或不等式(最值)的問(wèn)題,可通過(guò)函數的圖象求解(函數的零點(diǎn),頂點(diǎn)是關(guān)鍵點(diǎn)),作好知識的遷移與綜合運用; (3) 對于以下類(lèi)型的問(wèn)題需要注意:可分別通過(guò)構造距離函數、斜率函數、截距函數、單位圓x2+y2=1上的點(diǎn)及余弦定理進(jìn)行轉化達到解題目的。 分類(lèi)討論的數學(xué)思想 分類(lèi)討論是一種重要的數學(xué)思想方法,當問(wèn)題的對象不能進(jìn)行統一研究時(shí),就需要對研究的對象進(jìn)行分類(lèi),然后對每一類(lèi)分別研究,給出每一類(lèi)的結果,最終綜合各類(lèi)結果得到整個(gè)問(wèn)題的解答。
1.有關(guān)分類(lèi)討論的數學(xué)問(wèn)題需要運用分類(lèi)討論思想來(lái)解決,引起分類(lèi)討論的原因大致可歸納為如下幾種: (1)涉及的數學(xué)概念是分類(lèi)討論的; (2)運用的數學(xué)定理、公式、或運算性質(zhì)、法則是分類(lèi)給出的; (3)求解的數學(xué)問(wèn)題的結論有多種情況或多種可能性; (4)數學(xué)問(wèn)題中含有參變量,這些參變量的不同取值導致不同的結果的; (5)較復雜或非常規的數學(xué)問(wèn)題,需要采取分類(lèi)討論的解題策略來(lái)解決的。 2.分類(lèi)討論是一種邏輯方法,在中學(xué)數學(xué)中有極廣泛的應用。
根據不同標準可以有不同的分類(lèi)方法,但分類(lèi)必須從同一標準出發(fā),做到不重復,不遺漏 ,包含各種情況,同時(shí)要有利于問(wèn)題研究。 化歸與轉化思想 所謂化歸思想方法,就是在研究和解決有關(guān)數學(xué)問(wèn)題時(shí)采用某種手段將問(wèn)題通過(guò)變換使之轉化,進(jìn)而達到解決的一種方法。
一般總是將復雜的問(wèn)題通過(guò)變化轉化為簡(jiǎn)單的問(wèn)題,將難解問(wèn)題通過(guò)變換轉化為容易求解的問(wèn)題,將未解決的問(wèn)題轉化為已解決的問(wèn)題。 立體幾何中常用的轉化手段有 1.通過(guò)輔助平面轉化為平面問(wèn)題,把已知元素和未知元素聚集在一個(gè)平面內,實(shí)現點(diǎn)線(xiàn)、線(xiàn)線(xiàn)、線(xiàn)面、面面位置關(guān)系的轉化; 2.平移和射影,通過(guò)平移或射影達到將立體幾何問(wèn)題轉化為平面問(wèn)題,化未知為已知的目的; 3.等積與割補; 4.類(lèi)比和聯(lián)想; 5.曲與直的轉化; 6.體積比,面積比,長(cháng)度比的轉化; 7.解析幾何本身的創(chuàng )建過(guò)程就是“數”與“形”之間互相轉化的過(guò)程。
解析幾何把數學(xué)的主要研究對象數量關(guān)系與幾何圖形聯(lián)系起來(lái),把代數與幾何融合為一體。
【中學(xué)數學(xué)常用的解題方法】 數學(xué)的解題方法是隨著(zhù)對數學(xué)對象的研究的深入而發(fā)展起來(lái)的。
教師鉆研習題、精通解題方法,可以促進(jìn)教師進(jìn) 一步熟練地掌握中學(xué)數學(xué)教材,練好解題的基本功,提高解題技巧,積累教學(xué)資料,提高業(yè)務(wù)水平和教學(xué)能力。 下面介紹的解題方法,都是初中數學(xué)中最常用的,有些方法也是中學(xué)教學(xué)大綱要求掌握的。
1、配方法 所謂配方,就是把一個(gè)解析式利用恒等變形的方法,把其中的某些項配成一個(gè)或幾個(gè)多項式正整數次冪的和形式。 通過(guò)配方解決數學(xué)問(wèn)題的方法叫配方法。
其中,用的最多的是配成完全平方式。配方法是數學(xué)中一種重要的恒等 變形的方法,它的應用十分非常廣泛,在因式分解、化簡(jiǎn)根式、解方程、證明等式和不等式、求函數的極值和解析 式等方面都經(jīng)常用到它。
2、因式分解法 因式分解,就是把一個(gè)多項式化成幾個(gè)整式乘積的形式。因式分解是恒等變形的基礎,它作為數學(xué)的一個(gè)有力工具、一種數學(xué)方法在代數、幾何、三角等的解題中起著(zhù)重要的作用。
因式分解的方法有許多,除中學(xué)課本上介紹的提取 公因式法、公式法、分組分解法、十字相乘法等外,還有如利用拆項添項、求根分解、換元、待定系數等等。 3、換元法 換元法是數學(xué)中一個(gè)非常重要而且應用十分廣泛的解題方法。
我們通常把未知數或變數稱(chēng)為元,所謂換元法,就是 在一個(gè)比較復雜的數學(xué)式子中,用新的變元去代替原式的一個(gè)部分或改造原來(lái)的式子,使它簡(jiǎn)化,使問(wèn)題易于解決。 4、判別式法與韋達定理 一元二次方程ax2+bx+c=0(a、b、c屬于R,a≠0)根的判別,△=b2-4ac,不僅用來(lái)判定根的性質(zhì),而且作為一種解 題方法,在代數式變形,解方程(組),解不等式,研究函數乃至幾何、三角運算中都有非常廣泛的應用。
韋達定理除了已知一元二次方程的一個(gè)根,求另一根;已知兩個(gè)數的和與積,求這兩個(gè)數等簡(jiǎn)單應用外,還可以求 根的對稱(chēng)函數,計論二次方程根的符號,解對稱(chēng)方程組,以及解一些有關(guān)二次曲線(xiàn)的問(wèn)題等,都有非常廣泛的應用。 5、待定系數法 在解數學(xué)問(wèn)題時(shí),若先判斷所求的結果具有某種確定的形式,其中含有某些待定的系數,而后根據題設條件列出關(guān) 于待定系數的等式,最后解出這些待定系數的值或找到這些待定系數間的某種關(guān)系,從而解答數學(xué)問(wèn)題,這種解題 方法稱(chēng)為待定系數法。
它是中學(xué)數學(xué)中常用的方法之一。 6、構造法 在解題時(shí),我們常常會(huì )采用這樣的方法,通過(guò)對條件和結論的分析,構造輔助元素,它可以是一個(gè)圖形、一個(gè)方程 (組)、一個(gè)等式、一個(gè)函數、一個(gè)等價(jià)命題等,架起一座連接條件和結論的橋梁,從而使問(wèn)題得以解決,這種解 題的數學(xué)方法,我們稱(chēng)為構造法。
運用構造法解題,可以使代數、三角、幾何等各種數學(xué)知識互相滲透,有利于問(wèn)題的解決。 7、反證法 反證法是一種間接證法,它是先提出一個(gè)與命題的結論相反的假設,然后,從這個(gè)假設出發(fā),經(jīng)過(guò)正確的推理,導 致矛盾,從而否定相反的假設,達到肯定原命題正確的一種方法。
反證法可以分為歸謬反證法(結論的反面只有一種 )與窮舉反證法(結論的反面不只一種)。用反證法證明一個(gè)命題的步驟,大體上分為:(1)反設;(2)歸謬;(3)結論。
反設是反證法的基礎,為了正確地作出反設,掌握一些常用的互為否定的表述形式是有必要的,例如:是/不是; 存在/不存在;平行于/不平行于;垂直于/不垂直于;等于/不等于;大(小)于/不大(小)于;都是/不都是;至少有一 個(gè)/一個(gè)也沒(méi)有;至少有n個(gè)/至多有(n一1)個(gè);至多有一個(gè)/至少有兩個(gè);唯一/至少有兩個(gè)。 歸謬是反證法的關(guān)鍵,導出矛盾的過(guò)程沒(méi)有固定的模式,但必須從反設出發(fā),否則推導將成為無(wú)源之水,無(wú)本之木。
推理必須嚴謹。導出的矛盾有如下幾種類(lèi)型:與已知條件矛盾;與已知的公理、定義、定理、公式矛盾;與反設矛盾 ;自相矛盾。
8、面積法 平面幾何中講的面積公式以及由面積公式推出的與面積計算有關(guān)的性質(zhì)定理,不僅可用于計算面積,而且用它來(lái)證 明平面幾何題有時(shí)會(huì )收到事半功倍的效果。運用面積關(guān)系來(lái)證明或計算平面幾何題的方法,稱(chēng)為面積方法,它是幾 何中的一種常用方法。
用歸納法或分析法證明平面幾何題,其困難在添置輔助線(xiàn)。面積法的特點(diǎn)是把已知和未知各量用面積公式聯(lián)系起來(lái), 通過(guò)運算達到求證的結果。
所以用面積法來(lái)解幾何題,幾何元素之間關(guān)系變成數量之間的關(guān)系,只需要計算,有時(shí) 可以不添置補助線(xiàn),即使需要添置輔助線(xiàn),也很容易考慮到。 9、幾何變換法 在數學(xué)問(wèn)題的研究中,常常運用變換法,把復雜性問(wèn)題轉化為簡(jiǎn)單性的問(wèn)題而得到解決。
所謂變換是一個(gè)集合的任 一元素到同一集合的元素的一個(gè)一一映射。中學(xué)數學(xué)中所涉及的變換主要是初等變換。
有一些看來(lái)很難甚至于無(wú)法 下手的習題,可以借助幾何變換法,化繁為簡(jiǎn),化難為易。另一方面,也可將變換的觀(guān)點(diǎn)滲透到中學(xué)數學(xué)教學(xué)中。
將圖形從相等靜止條件下的研究和運動(dòng)中的研究結合起來(lái),有利于對圖形本質(zhì)的認識。 幾何變換包括:(1)平移;(2)旋轉;(3)對稱(chēng)。
10.客觀(guān)性題的解題方法 選擇題是給出條件和結論,要求根據一定的關(guān)系找出正確答案的一。
對于那些成績(jì)較差的小學(xué)生來(lái)說(shuō),學(xué)習小學(xué)數學(xué)都有很大的難度,其實(shí)小學(xué)數學(xué)屬于基礎類(lèi)的知識比較多,只要掌握一定的技巧還是比較容易掌握的.在小學(xué),是一個(gè)需要養成良好習慣的時(shí)期,注重培養孩子的習慣和學(xué)習能力是重要的一方面,那小學(xué)數學(xué)有哪些技巧?
一、重視課內聽(tīng)講,課后及時(shí)進(jìn)行復習.
新知識的接受和數學(xué)能力的培養主要是在課堂上進(jìn)行的,所以我們必須特別注意課堂學(xué)習的效率,尋找正確的學(xué)習方法.在課堂上,我們必須遵循教師的思想,積極制定以下步驟,思考和預測解決問(wèn)題的思想與教師之間的差異.特別是,我們必須了解基本知識和基本學(xué)習技能,并及時(shí)審查它們以避免疑慮.首先,在進(jìn)行各種練習之前,我們必須記住教師的知識點(diǎn),正確理解各種公式的推理過(guò)程,并試著(zhù)記住而不是采用"不確定的書(shū)籍閱讀".勤于思考,對于一些問(wèn)題試著(zhù)用大腦去思考,認真分析問(wèn)題,嘗試自己解決問(wèn)題.
二、多做習題,養成解決問(wèn)題的好習慣.
如果你想學(xué)好數學(xué),你需要提出更多問(wèn)題,熟悉各種問(wèn)題的解決問(wèn)題的想法.首先,我們先從課本的題目為標準,反復練習基本知識,然后找一些課外活動(dòng),幫助開(kāi)拓思路練習,提高自己的分析和掌握解決的規律.對于一些易于查找的問(wèn)題,您可以準備一個(gè)用于收集的錯題本,編寫(xiě)自己的想法來(lái)解決問(wèn)題,在日常養成解決問(wèn)題的好習慣.學(xué)會(huì )讓自己高度集中精力,使大腦興奮,快速思考,進(jìn)入最佳狀態(tài)并在考試中自由使用.
三、調整心態(tài)并正確對待考試.
首先,主要的重點(diǎn)應放在基礎、基本技能、基本方法,因為大多數測試出于基本問(wèn)題,較難的題目也是出自于基本.所以只有調整學(xué)習的心態(tài),盡量讓自己用一個(gè)清楚的頭腦去解決問(wèn)題,就沒(méi)有太難的題目.考試前要多對習題進(jìn)行演練,開(kāi)闊思路,在保證真確的前提下提高做題的速度.對于簡(jiǎn)單的基礎題目要拿出二十分的把握去做;難得題目要盡量去做對,使自己的水平能正常或者超常發(fā)揮.
由此可見(jiàn)小學(xué)數學(xué)的技巧就是多做練習題,掌握基本知識.另外就是心態(tài),不能見(jiàn)考試就膽怯,調整心態(tài)很重要.所以大家可以遵循這些技巧,來(lái)提高自己的能力,使自己進(jìn)入到數學(xué)的海洋中去.
《領(lǐng)悟數學(xué)思想方法,讓課堂綻放魅力,讓學(xué)生展現風(fēng)采》——小學(xué)數學(xué)教學(xué)中滲透數學(xué)思想方法思考與實(shí)踐匯報:兆麟小學(xué)農豐小學(xué)蘭陵小學(xué)今天由我們三人匯報的題目是:《領(lǐng)悟數學(xué)思想方法,讓課堂綻放魅力,讓學(xué)生展現風(fēng)采》中國科學(xué)院院士、著(zhù)名數學(xué)家張景中曾指出:“小學(xué)生學(xué)的數學(xué)很初等,很簡(jiǎn)單。
但盡管簡(jiǎn)單,里面卻蘊含了一些深刻的數學(xué)思想。”數學(xué)知識和數學(xué)思想方法作為小學(xué)數學(xué)學(xué)習的兩條線(xiàn)索,一明一暗,相互支撐,其中數學(xué)思想方法提示了數學(xué)的本質(zhì)和發(fā)展規律,可以說(shuō)是數學(xué)的精髓。
下面我們就談?wù)剶祵W(xué)思想方法。一、為什么要在教學(xué)中滲透數學(xué)思想方法1、基本數學(xué)思想方法對學(xué)生的發(fā)展具有重要意義一位教育學(xué)家曾指出:“作為知識的數學(xué)出校門(mén)不到兩年可能就忘了,惟有深深銘記在頭腦中的是數學(xué)煌精神和數學(xué)的思想、研究方法、著(zhù)眼點(diǎn)等,這些隨時(shí)隨地發(fā)生作用使學(xué)生終身受益。”
數學(xué)的思想方法是數學(xué)的靈魂和精髓,掌握科學(xué)的數學(xué)思想方法對提升學(xué)生思維品質(zhì),對數學(xué)學(xué)科的后繼學(xué)習,對其他學(xué)得的學(xué)習,乃至學(xué)生的終身發(fā)展有十分重要的意義。在小學(xué)數學(xué)教學(xué)中有意識地滲透一些基本數學(xué)思想方法,是增強學(xué)生數學(xué)觀(guān)念,形成良好思維素質(zhì)的關(guān)鍵。
不僅能使學(xué)生領(lǐng)悟數學(xué)的真諦,懂得數學(xué)的價(jià)值學(xué)會(huì )數學(xué)地思考和解決問(wèn)題,還可以把知識的學(xué)習與能力的培養、智力的發(fā)展有機地統一起來(lái)。2.滲透基本數學(xué)思想方法是落實(shí)新課標精神的需求數學(xué)課程標準把“四基”:基本知識、基本技能、基本思想、基本活動(dòng)經(jīng)驗作為目標體系。
基本思想是數學(xué)學(xué)習的目標之一,其重要性不言而喻。新教材是把一些重要的數學(xué)思想方法通過(guò)學(xué)生日常生活中最簡(jiǎn)單的事例呈現出來(lái),并運用操作、實(shí)驗等直觀(guān)手段解決這些問(wèn)題。
從而加深學(xué)生對數學(xué)概念、公式、定理、定律的理解,提高學(xué)生數學(xué)能力和思維品質(zhì),這是數學(xué)教育實(shí)現從傳授知識到培養學(xué)生分析問(wèn)題、解決問(wèn)題能力的重要途徑,也是小學(xué)數學(xué)新課程改革的真正內涵之在。二、課教材滲透了哪些數學(xué)思想小學(xué)數學(xué)中最上位的思想就是演繹和歸納,是數學(xué)教學(xué)的主線(xiàn)。
還有一些常用的數學(xué)思想方法:對應思想、——是指對兩個(gè)集合元素之間聯(lián)系的把握。許多數學(xué)方法來(lái)源于對應思想。
比如學(xué)生在計算練習時(shí)常常有10?20*2?30?40?50?形式出現,這其實(shí)就體現了對應的思想。如數軸上的一個(gè)點(diǎn)就對應一個(gè)數,任何一個(gè)數都能在數軸上找到相對應的點(diǎn),一一對應,呈現完美。
符號化思想、——數學(xué)發(fā)展到今天,已成為一個(gè)符號的世界。英國著(zhù)名數學(xué)家素曾說(shuō):“什么是數學(xué)?數學(xué)就是符號加邏輯。”
符號化思想即指人們有意識地、普遍地運用符號化的語(yǔ)言去表述研究的對象。符號化思想在整個(gè)小學(xué)都有較多的滲透,例如:阿拉伯數字:1、2、3、5、6、……+、–、、等運算符號;>、。
小學(xué)數學(xué)教學(xué)中滲透數學(xué)思想方法的必要性 所謂數學(xué)思想,是指人們對數學(xué)理論與內容的本質(zhì)認識,它直接支配著(zhù)數學(xué)的實(shí)踐活動(dòng)。
所謂數學(xué)方法, 是指某一數學(xué)活動(dòng)過(guò)程的途徑、程序、手段,它具有過(guò)程性、層次性和可操作性等特點(diǎn)。數學(xué)思想是數學(xué)方法 的靈魂,數學(xué)方法是數學(xué)思想的表現形式和得以實(shí)現的手段,因此,人們把它們稱(chēng)為數學(xué)思想方法。
小學(xué)數學(xué)教材是數學(xué)教學(xué)的顯性知識系統,許多重要的法則、公式,教材中只能看到漂亮的結論,許多例 題的解法,也只能看到巧妙的處理,而看不到由特殊實(shí)例的觀(guān)察、試驗、分析、歸納、抽象概括或探索推理的 心智活動(dòng)過(guò)程。因此,數學(xué)思想方法是數學(xué)教學(xué)的隱性知識系統,小學(xué)數學(xué)教學(xué)應包括顯性和隱性?xún)煞矫嬷R 的教學(xué)。
如果教師在教學(xué)中,僅僅依照課本的安排,沿襲著(zhù)從概念、公式到例題、練習這一傳統的教學(xué)過(guò)程, 即使教師講深講透,并要求學(xué)生記住結論,掌握解題的類(lèi)型和方法,這樣培養出來(lái)的學(xué)生也只能是“知識型” 、“記憶型”的,將完全背離數學(xué)教育的目標。 在認知心理學(xué)里,思想方法屬于元認知范疇,它對認知活動(dòng)起著(zhù)監控、調節作用,對培養能力起著(zhù)決定性 的作用。
學(xué)習數學(xué)的目的“就意味著(zhù)解題”(波利亞語(yǔ)),解題關(guān)鍵在于找到合適的解題思路,數學(xué)思想方法 就是幫助構建解題思路的指導思想。因此,向學(xué)生滲透一些基本的數學(xué)思想方法,提高學(xué)生的元認知水平,是 培養學(xué)生分析問(wèn)題和解決問(wèn)題能力的重要途徑。
數學(xué)知識本身是非常重要的,但它并不是惟一的決定因素,真正對學(xué)生以后的學(xué)習、生活和工作長(cháng)期起作 用,并使其終生受益的是數學(xué)思想方法。未來(lái)社會(huì )將需要大量具有較強數學(xué)意識和數學(xué)素質(zhì)的人才。
21世紀國 際數學(xué)教育的根本目標就是“問(wèn)題解決”。因此,向學(xué)生滲透一些基本的數學(xué)思想方法,是未來(lái)社會(huì )的要求和 國際數學(xué)教育發(fā)展的必然結果。
小學(xué)數學(xué)教學(xué)的根本任務(wù)是全面提高學(xué)生素質(zhì),其中最重要的因素是思維素質(zhì),而數學(xué)思想方法就是增強 學(xué)生數學(xué)觀(guān)念,形成良好思維素質(zhì)的關(guān)鍵。如果將學(xué)生的數學(xué)素質(zhì)看作一個(gè)坐標系,那么數學(xué)知識、技能就好 比橫軸上的因素,而數學(xué)思想方法就是縱軸的內容。
淡化或忽視數學(xué)思想方法的教學(xué),不僅不利于學(xué)生從縱橫 兩個(gè)維度上把握數學(xué)學(xué)科的基本結構,也必將影響其能力的發(fā)展和數學(xué)素質(zhì)的提高。因此,向學(xué)生滲透一些基 本的數學(xué)思想方法,是數學(xué)教學(xué)改革的新視角,是進(jìn)行數學(xué)素質(zhì)教育的突破口。
聲明:本網(wǎng)站尊重并保護知識產(chǎn)權,根據《信息網(wǎng)絡(luò )傳播權保護條例》,如果我們轉載的作品侵犯了您的權利,請在一個(gè)月內通知我們,我們會(huì )及時(shí)刪除。
蜀ICP備2020033479號-4 Copyright ? 2016 學(xué)習?shū)B(niǎo). 頁(yè)面生成時(shí)間:3.477秒