平時(shí)學(xué)習方面 1、養成良好的學(xué)習數學(xué)習慣。
建立良好的學(xué)習數學(xué)習慣,會(huì )使自己學(xué)習感到有序而輕松。高中數學(xué)的良好習慣應是:多質(zhì)疑、勤思考、好動(dòng)手、重歸納、注意應用。
學(xué)生在學(xué)習數學(xué)的過(guò)程中,要把教師所傳授的知識翻譯成為自己的特殊語(yǔ)言,并永久記憶在自己的腦海中。良好的學(xué)習數學(xué)習慣包括課前自學(xué)、專(zhuān)心上課、及時(shí)復習、獨立作業(yè)、解決疑難、系統小結和課外學(xué)習幾個(gè)方面。
2、及時(shí)了解、掌握常用的數學(xué)思想和方法 學(xué)好高中數學(xué),需要我們從數學(xué)思想與方法高度來(lái)掌握它。中學(xué)數學(xué)學(xué)習要重點(diǎn)掌握的的數學(xué)思想有以上幾個(gè):集合與對應思想,分類(lèi)討論思想,數形結合思想,運動(dòng)思想,轉化思想,變換思想。
有了數學(xué)思想以后,還要掌握具體的方法,比如:換元、待定系數、數學(xué)歸納法、分析法、綜合法、反證法等等。在具體的方法中,常用的有:觀(guān)察與實(shí)驗,聯(lián)想與類(lèi)比,比較與分類(lèi),分析與綜合,歸納與演繹,一般與特殊,有限與無(wú)限,抽象與概括等。
解數學(xué)題時(shí),也要注意解題思維策略問(wèn)題,經(jīng)常要思考:選擇什么角度來(lái)進(jìn)入,應遵循什么原則性的東西。高中數學(xué)中經(jīng)常用到的數學(xué)思維策略有:以簡(jiǎn)馭繁、數形結合、進(jìn)退互用、化生為熟、正難則反、倒順相還、動(dòng)靜轉換、分合相輔等。
3、逐步形成 “以我為主”的學(xué)習模式 數學(xué)不是靠老師教會(huì )的,而是在老師的引導下,靠自己主動(dòng)的思維活動(dòng)去獲取的。學(xué)習數學(xué)就要積極主動(dòng)地參與學(xué)習過(guò)程,養成實(shí)事求是的科學(xué)態(tài)度,獨立思考、勇于探索的創(chuàng )新精神;正確對待學(xué)習中的困難和挫折,敗不餒,勝不驕,養成積極進(jìn)取,不屈不撓,耐挫折的優(yōu)良心理品質(zhì);在學(xué)習過(guò)程中,要遵循認識規律,善于開(kāi)動(dòng)腦筋,積極主動(dòng)去發(fā)現問(wèn)題,注重新舊知識間的內在聯(lián)系,不滿(mǎn)足于現成的思路和結論,經(jīng)常進(jìn)行一題多解,一題多變,從多側面、多角度思考問(wèn)題,挖掘問(wèn)題的實(shí)質(zhì)。
學(xué)習數學(xué)一定要講究“活”,只看書(shū)不做題不行,只埋頭做題不總結積累也不行。對課本知識既要能鉆進(jìn)去,又要能跳出來(lái),結合自身特點(diǎn),尋找最佳學(xué)習方法。
4、針對自己的學(xué)習情況,采取一些具體的措施 (1)記數學(xué)筆記,特別是對概念理解的不同側面和數學(xué)規律,教師在課堂中拓展的課外知識。記錄下來(lái)本章你覺(jué)得最有價(jià)值的思想方法或例題,以及你還存在的未解決的問(wèn)題,以便今后將其補上。
(2)建立數學(xué)糾錯本。把平時(shí)容易出現錯誤的知識或推理記載下來(lái),以防再犯。
爭取做到:找錯、析錯、改錯、防錯。達到:能從反面入手深入理解正確東西;能由果朔因把錯誤原因弄個(gè)水落石出、以便對癥下藥;解答問(wèn)題完整、推理嚴密。
(3)熟記一些數學(xué)規律和數學(xué)小結論,使自己平時(shí)的運算技能達到了自動(dòng)化或半自動(dòng)化的熟練程度。 (4)經(jīng)常對知識結構進(jìn)行梳理,形成板塊結構,實(shí)行“整體集裝”,如表格化,使知識結構一目了然;經(jīng)常對習題進(jìn)行類(lèi)化,由一例到一類(lèi),由一類(lèi)到多類(lèi),由多類(lèi)到統一;使幾類(lèi)問(wèn)題歸納于同一知識方法。
(5)閱讀數學(xué)課外書(shū)籍與報刊,參加數學(xué)學(xué)科課外活動(dòng)與講座,多做數學(xué)課外題,加大自學(xué)力度,拓展自己的知識面。 (6)及時(shí)復習,強化對基本概念知識體系的理解與記憶,進(jìn)行適當的反復鞏固,消滅前學(xué)后忘。
(7)學(xué)會(huì )從多角度、多層次地進(jìn)行總結歸類(lèi)。如:①從數學(xué)思想分類(lèi)②從解題方法歸類(lèi)③從知識應用上分類(lèi)等,使所學(xué)的知識系統化、條理化、專(zhuān)題化、網(wǎng)絡(luò )化。
(8)經(jīng)常在做題后進(jìn)行一定的“反思”,思考一下本題所用的基礎知識,數學(xué)思想方法是什么,為什么要這樣想,是否還有別的想法和解法,本題的分析方法與解法,在解其它問(wèn)題時(shí),是否也用到過(guò)。 (9)無(wú)論是作業(yè)還是測驗,都應把準確性放在第一位,通法放在第一位,而不是一味地去追求速度或技巧,這是學(xué)好數學(xué)的重要問(wèn)題。
解題方面 數學(xué)是應用性很強的學(xué)科,學(xué)習數學(xué)就是學(xué)習解題。搞題海戰術(shù)的方式、方法固然是不對的,但離開(kāi)解題來(lái)學(xué)習數學(xué)同樣也是錯誤的。
其中的關(guān)鍵在于對待題目的態(tài)度和處理解題的方式上。 ——首先是精選題目,做到少而精 只有解決質(zhì)量高的、有代表性的題目才能達到事半功倍的效果。
然而絕大多數的同學(xué)還沒(méi)有辨別、分析題目好壞的能力,這就需要在老師的指導下來(lái)選擇復習的練習題,以了解高考題的形式、難度。 ——其次是分析題目 解答任何一個(gè)數學(xué)題目之前,都要先進(jìn)行分析。
相對于比較難的題目,分析更顯得尤為重要。我們知道,解決數學(xué)問(wèn)題實(shí)際上就是在題目的已知條件和待求結論中架起聯(lián)系的橋梁,也就是在分析題目中已知與待求之間差異的基礎上,化歸和消除這些差異。
當然在這個(gè)過(guò)程中也反映出對數學(xué)基礎知識掌握的熟練程度、理解程度和數學(xué)方法的靈活應用能力。例如,許多三角方面的題目都是把角、函數名、結構形式統一后就可以解決問(wèn)題了,而選擇怎樣的三角公式也是成敗的關(guān)鍵。
——最后,題目總結 解題不是目的,我們是通過(guò)解題來(lái)檢驗我們的學(xué)習效果,發(fā)現學(xué)習中的不足的,以便改進(jìn)和提高。因此,解題后的總結至關(guān)重要,這正是我們學(xué)習的大好機會(huì )。
對于一道完成的題目,有以下幾個(gè)方面需要總結: ①在知識方面,題目中涉及哪些概念、定理、公式等基。
數學(xué)的解題方法是隨著(zhù)對數學(xué)對象的研究的深入而發(fā)展起來(lái)的。
教師鉆研習題、精通解題方法,可以促進(jìn)教師進(jìn)一步熟練地掌握中學(xué)數學(xué)教材,練好解題的基本功,提高解題技巧,積累教學(xué)資料,提高業(yè)務(wù)水平和教學(xué)能力。 下面介紹的解題方法,都是初中數學(xué)中最常用的,有些方法也是中學(xué)教學(xué)大綱要求掌握的。
1、配方法 所謂配方,就是把一個(gè)解析式利用恒等變形的方法,把其中的某些項配成一個(gè)或幾個(gè)多項式正整數次冪的和形式。通過(guò)配方解決數學(xué)問(wèn)題的方法叫配方法。
其中,用的最多的是配成完全平方式。配方法是數學(xué)中一種重要的恒等變形的方法,它的應用十分非常廣泛,在因式分解、化簡(jiǎn)根式、解方程、證明等式和不等式、求函數的極值和解析式等方面都經(jīng)常用到它。
2、因式分解法 因式分解,就是把一個(gè)多項式化成幾個(gè)整式乘積的形式。因式分解是恒等變形的基礎,它作為數學(xué)的一個(gè)有力工具、一種數學(xué)方法在代數、幾何、三角等的解題中起著(zhù)重要的作用。
因式分解的方法有許多,除中學(xué)課本上介紹的提取公因式法、公式法、分組分解法、十字相乘法等外,還有如利用拆項添項、求根分解、換元、待定系數等等。 3、換元法 換元法是數學(xué)中一個(gè)非常重要而且應用十分廣泛的解題方法。
我們通常把未知數或變數稱(chēng)為元,所謂換元法,就是在一個(gè)比較復雜的數學(xué)式子中,用新的變元去代替原式的一個(gè)部分或改造原來(lái)的式子,使它簡(jiǎn)化,使問(wèn)題易于解決。 4、判別式法與韋達定理 一元二次方程ax2+bx+c=0(a、b、c屬于R,a≠0)根的判別,△=b2-4ac,不僅用來(lái)判定根的性質(zhì),而且作為一種解題方法,在代數式變形,解方程(組),解不等式,研究函數乃至幾何、三角運算中都有非常廣泛的應用。
韋達定理除了已知一元二次方程的一個(gè)根,求另一根;已知兩個(gè)數的和與積,求這兩個(gè)數等簡(jiǎn)單應用外,還可以求根的對稱(chēng)函數,計論二次方程根的符號,解對稱(chēng)方程組,以及解一些有關(guān)二次曲線(xiàn)的問(wèn)題等,都有非常廣泛的應用。 5、待定系數法 在解數學(xué)問(wèn)題時(shí),若先判斷所求的結果具有某種確定的形式,其中含有某些待定的系數,而后根據題設條件列出關(guān)于待定系數的等式,最后解出這些待定系數的值或找到這些待定系數間的某種關(guān)系,從而解答數學(xué)問(wèn)題,這種解題方法稱(chēng)為待定系數法。
它是中學(xué)數學(xué)中常用的方法之一。 6、構造法 在解題時(shí),我們常常會(huì )采用這樣的方法,通過(guò)對條件和結論的分析,構造輔助元素,它可以是一個(gè)圖形、一個(gè)方程(組)、一個(gè)等式、一個(gè)函數、一個(gè)等價(jià)命題等,架起一座連接條件和結論的橋梁,從而使問(wèn)題得以解決,這種解題的數學(xué)方法,我們稱(chēng)為構造法。
運用構造法解題,可以使代數、三角、幾何等各種數學(xué)知識互相滲透,有利于問(wèn)題的解決。 7、反證法 反證法是一種間接證法,它是先提出一個(gè)與命題的結論相反的假設,然后,從這個(gè)假設出發(fā),經(jīng)過(guò)正確的推理,導致矛盾,從而否定相反的假設,達到肯定原命題正確的一種方法。
反證法可以分為歸謬反證法(結論的反面只有一種)與窮舉反證法(結論的反面不只一種)。用反證法證明一個(gè)命題的步驟,大體上分為:(1)反設;(2)歸謬;(3)結論。
反設是反證法的基礎,為了正確地作出反設,掌握一些常用的互為否定的表述形式是有必要的,例如:是/不是;存在/不存在;平行于/不平行于;垂直于/不垂直于;等于/不等于;大(小)于/不大(小)于;都是/不都是;至少有一個(gè)/一個(gè)也沒(méi)有;至少有n個(gè)/至多有(n一1)個(gè);至多有一個(gè)/至少有兩個(gè);唯一/至少有兩個(gè)。 歸謬是反證法的關(guān)鍵,導出矛盾的過(guò)程沒(méi)有固定的模式,但必須從反設出發(fā),否則推導將成為無(wú)源之水,無(wú)本之木。
推理必須嚴謹。導出的矛盾有如下幾種類(lèi)型:與已知條件矛盾;與已知的公理、定義、定理、公式矛盾;與反設矛盾;自相矛盾。
8、面積法 平面幾何中講的面積公式以及由面積公式推出的與面積計算有關(guān)的性質(zhì)定理,不僅可用于計算面積,而且用它來(lái)證明平面幾何題有時(shí)會(huì )收到事半功倍的效果。運用面積關(guān)系來(lái)證明或計算平面幾何題的方法,稱(chēng)為面積方法,它是幾何中的一種常用方法。
用歸納法或分析法證明平面幾何題,其困難在添置輔助線(xiàn)。面積法的特點(diǎn)是把已知和未知各量用面積公式聯(lián)系起來(lái),通過(guò)運算達到求證的結果。
所以用面積法來(lái)解幾何題,幾何元素之間關(guān)系變成數量之間的關(guān)系,只需要計算,有時(shí)可以不添置補助線(xiàn),即使需要添置輔助線(xiàn),也很容易考慮到。 9、幾何變換法 在數學(xué)問(wèn)題的研究中,常常運用變換法,把復雜性問(wèn)題轉化為簡(jiǎn)單性的問(wèn)題而得到解決。
所謂變換是一個(gè)集合的任一元素到同一集合的元素的一個(gè)一一映射。中學(xué)數學(xué)中所涉及的變換主要是初等變換。
有一些看來(lái)很難甚至于無(wú)法下手的習題,可以借助幾何變換法,化繁為簡(jiǎn),化難為易。另一方面,也可將變換的觀(guān)點(diǎn)滲透到中學(xué)數學(xué)教學(xué)中。
將圖形從相等靜止條件下的研究和運動(dòng)中的研究結合起來(lái),有利于對圖形本質(zhì)的認識。 幾何變換包括:(1)平移;(2)旋轉;(3)對稱(chēng)。
10.客觀(guān)性題的解題方法 選擇題是給出條件和結論,要求根據一定的關(guān)系找出正確答案的一類(lèi)題型。選擇題的題。
明確目標,扎實(shí)推導,記憶的要領(lǐng)——“不理解,無(wú)記憶”
1.記憶的目的是為了應用
人腦不應該去和電腦比拼記憶力。我們記憶的目的不是為了挑戰自己的記憶力,而是為了在中高考中幫助我們解題,或者用來(lái)解決別的實(shí)際問(wèn)題。有意義的東西才去記,沒(méi)意義的東西就不要記。
不要迷信一些花里胡哨的記憶訣竅。比如,不管是用“諧音法”還是“圖形法”還是別的什么方法來(lái)強行記憶圓周率后的幾十位數字,這些東西都是沒(méi)有意義的。有這個(gè)工夫,不如多解幾道數學(xué)題,對提高數學(xué)成績(jì)更有幫助。
2. 根據知識的用途來(lái)決定記憶的重點(diǎn)
并不是所有需要記憶的東西都要記得一清二楚才算“記住了”。只要得到了我們背一個(gè)東西所希望得到的收獲,就算“記住了”。
數學(xué)、物理、化學(xué)等理科公式的記憶,目的是為了計算解題,所以重點(diǎn)在于知道它的來(lái)龍去脈,用起來(lái)才靈活;語(yǔ)文的詩(shī)詞和文段,重點(diǎn)在于理解它的構架和文筆,寫(xiě)作的時(shí)候才能借鑒,至于個(gè)別字詞記憶有點(diǎn)小差錯,其實(shí)沒(méi)什么關(guān)系;歷史政治知識的記憶,重點(diǎn)在于記住歷史事件的脈絡(luò )和政治理論的邏輯結構,在分析問(wèn)題回答問(wèn)題的時(shí)候能夠用得上,至于具體的表述,不需要記得一字不差;英語(yǔ)文章的背誦,重點(diǎn)在于加深對單詞、語(yǔ)法和句型的理解,背完之后把文章忘了都沒(méi)關(guān)系,記住文中有用的語(yǔ)法和句子結構就行。
3. 只有真正理解的東西才能記得牢
記憶=90% 的理解+10% 的背誦。花在理解上的時(shí)間一定要比背誦的時(shí)間多,這樣學(xué)習才有效率。沒(méi)有建立在理解基礎上的死記硬背,只會(huì )有兩種結果:第一,記得慢,忘得快;第二,記得快,忘得更快。
如果有一些知識記起來(lái)很痛苦,或者不斷地背又不斷地忘。首先要懷疑的不是自己的智商,而是自己對這些知識有沒(méi)有徹底理解。
4. 徹底理解是指明白過(guò)程而不是記住結果
在某一塊知識的內部,如果你知道它里邊最簡(jiǎn)單的概念與最復雜的內容之間的聯(lián)系,那么你對這一塊知識,就算徹底理解了。它強調的是過(guò)程,而不是結果。
在復習解析幾何的時(shí)候,你可以先問(wèn)自己:“解析幾何最簡(jiǎn)單的概念是什么?”然后問(wèn)自己:“解析幾何里面哪些地方我覺(jué)得最難,最搞不清楚?”然后,你試著(zhù)用各種方法讓自己搞清楚怎么從這些最簡(jiǎn)單的概念一步一步推出最難最復雜的知識點(diǎn)。只要你把這個(gè)過(guò)程搞清楚了,那么,這些難點(diǎn)對你而言,就可以算是徹底理解了。這個(gè)方法,對任何一種有規律的知識,都是有用的。
5. 把握知識的規律可以讓記憶事半功倍
在徹底理解的基礎上,把握知識的規律,可以讓我們的記憶事半功倍。尋找規律的方法,將通過(guò)一系列的例子詳細講解。
聲明:本網(wǎng)站尊重并保護知識產(chǎn)權,根據《信息網(wǎng)絡(luò )傳播權保護條例》,如果我們轉載的作品侵犯了您的權利,請在一個(gè)月內通知我們,我們會(huì )及時(shí)刪除。
蜀ICP備2020033479號-4 Copyright ? 2016 學(xué)習?shū)B(niǎo). 頁(yè)面生成時(shí)間:4.096秒