常見(jiàn)的預測方法有單點(diǎn)預測,即確定性預測;區間預測;和概率預測三種方法。
單點(diǎn)預測,顧名思義,只能給出一個(gè)預測值,不能表達該預測值的可信度;
區間預測在單點(diǎn)預測的基礎上,給出某次預測值在某一區間上的可信度,即能夠給出一個(gè)預測范圍,以及以多大的可能性落在這個(gè)范圍;
概率預測是咋區間預測的基礎上,給出一個(gè)概率分布,預測出所有可能出現的結果,以及對應的概率。這種方法比較全面,能夠給出全局信息,適于風(fēng)險相關(guān)的分析。目前在氣象、地震、水文和農業(yè)相關(guān)方面用的比較多。
定量預測方法有:
加權算術(shù)平均法
用各種權數算得的平均數稱(chēng)為加權算術(shù)平均數,它可以自然數作權數,也可以項目出現的次數作權數,所求平均數值即為測定值。
趨勢平均預測法
趨勢平均預測法是以過(guò)去發(fā)生的實(shí)際數為依據,在算術(shù)平均數的基礎上,假定未來(lái)時(shí)期的數值是它近期數值直接繼續,而同較遠時(shí)期的數值關(guān)系較小的一種預測方法。
指數平滑法
指數平滑法是以一個(gè)指標本身過(guò)去變化的趨勢作為預測未來(lái)的依據的一種方法。對未來(lái)預測時(shí),考慮則近期資料的影響應比遠期為大,因而對不同時(shí)期的資料不同的權數,越是近期資料權數越大,反之權數越小。
(4)平均發(fā)展速度法
(5)一元線(xiàn)性回歸預測法
根據x、y現有數據,尋求合理的a、b回歸系數,得出一條變動(dòng)直線(xiàn),并使線(xiàn)上各點(diǎn)至實(shí)際資料上的對應點(diǎn)之間的距離最小。
設變動(dòng)直線(xiàn)方程為:y=a+bx
(6)高低點(diǎn)法
高低點(diǎn)法是利用代數式y=a+bx,選用一定歷史資料中的最高業(yè)務(wù)量與最低業(yè)務(wù)量的總成本(或總費用)之差△y,與兩者業(yè)務(wù)量之差△x進(jìn)行對比,求出b,然后再求出a的方法。
一、描述性統計
描述性統計是一類(lèi)統計方法的匯總,揭示了數據分布特性。它主要包括數據的頻數分析、數據的集中趨勢分析、數據離散程度分析、數據的分布以及一些基本的統計圖形。
1、缺失值填充:常用方法有剔除法、均值法、決策樹(shù)法。
2、正態(tài)性檢驗:很多統計方法都要求數值服從或近似服從正態(tài)分布,所以在做數據分析之前需要進(jìn)行正態(tài)性檢驗。常用方法:非參數檢驗的K-量檢驗、P-P圖、Q-Q圖、W檢驗、動(dòng)差法。
二、回歸分析
回歸分析是應用極其廣泛的數據分析方法之一。它基于觀(guān)測數據建立變量間適當的依賴(lài)關(guān)系,以分析數據內在規律。
1. 一元線(xiàn)性分析
只有一個(gè)自變量X與因變量Y有關(guān),X與Y都必須是連續型變量,因變量Y或其殘差必須服從正態(tài)分布。
2. 多元線(xiàn)性回歸分析
使用條件:分析多個(gè)自變量X與因變量Y的關(guān)系,X與Y都必須是連續型變量,因變量Y或其殘差必須服從正態(tài)分布。
3.Logistic回歸分析
線(xiàn)性回歸模型要求因變量是連續的正態(tài)分布變量,且自變量和因變量呈線(xiàn)性關(guān)系,而Logistic回歸模型對因變量的分布沒(méi)有要求,一般用于因變量是離散時(shí)的情況。
4. 其他回歸方法:非線(xiàn)性回歸、有序回歸、Probit回歸、加權回歸等。
三、方差分析
使用條件:各樣本須是相互獨立的隨機樣本;各樣本來(lái)自正態(tài)分布總體;各總體方差相等。
1. 單因素方差分析:一項試驗只有一個(gè)影響因素,或者存在多個(gè)影響因素時(shí),只分析一個(gè)因素與響應變量的關(guān)系。
2. 多因素有交互方差分析:一頊實(shí)驗有多個(gè)影響因素,分析多個(gè)影響因素與響應變量的關(guān)系,同時(shí)考慮多個(gè)影響因素之間的關(guān)系
3. 多因素無(wú)交互方差分析:分析多個(gè)影響因素與響應變量的關(guān)系,但是影響因素之間沒(méi)有影響關(guān)系或忽略影響關(guān)系
4. 協(xié)方差分祈:傳統的方差分析存在明顯的弊端,無(wú)法控制分析中存在的某些隨機因素,降低了分析結果的準確度。協(xié)方差分析主要是在排除了協(xié)變量的影響后再對修正后的主效應進(jìn)行方差分析,是將線(xiàn)性回歸與方差分析結合起來(lái)的一種分析方法。
四、假設檢驗
1. 參數檢驗
參數檢驗是在已知總體分布的條件下(一股要求總體服從正態(tài)分布)對一些主要的參數(如均值、百分數、方差、相關(guān)系數等)進(jìn)行的檢驗 。
2. 非參數檢驗
非參數檢驗則不考慮總體分布是否已知,常常也不是針對總體參數,而是針對總體的某些一般性假設(如總體分布的位罝是否相同,總體分布是否正態(tài))進(jìn)行檢驗。
適用情況:順序類(lèi)型的數據資料,這類(lèi)數據的分布形態(tài)一般是未知的。
1)雖然是連續數據,但總體分布形態(tài)未知或者非正態(tài);
2)總體分布雖然正態(tài),數據也是連續類(lèi)型,但樣本容量極小,如10以下;
主要方法包括:卡方檢驗、秩和檢驗、二項檢驗、游程檢驗、K-量檢驗等。
定量預測是使用一歷史數據或因素變量來(lái)預測需求的數學(xué)模型。是根據已掌握的比較完備的歷史統計數據,運用一定的數學(xué)方法進(jìn)行科學(xué)的加工整理,借以揭示有關(guān)變量之間的規律性聯(lián)系,用于預測和推測未來(lái)發(fā)展變化情況的一類(lèi)預測方法。 烽火獵頭專(zhuān)家認為定量預測方法也稱(chēng)統計預測法,其主要特點(diǎn)是利用統計資料和數學(xué)模型來(lái)進(jìn)行預測。然而,這并不意味著(zhù)定量方法完全排除主觀(guān)因素,相反主觀(guān)判斷在定量方法中仍起著(zhù)重要的作用,只不過(guò)與定性方法相比,各種主觀(guān)因素所起的作用小一些罷了。
目前工商企業(yè)中常用的預測方法有以下幾種:
(1)加權算術(shù)平均法
用各種權數算得的平均數稱(chēng)為加權算術(shù)平均數,它可以自然數作權數,也可以項目出現的次數作權數,所求平均數值即為測定值。
(2)趨勢平均預測法
趨勢平均預測法是以過(guò)去發(fā)生的實(shí)際數為依據,在算術(shù)平均數的基礎上,假定未來(lái)時(shí)期的數值是它近期數值直接繼續,而同較遠時(shí)期的數值關(guān)系較小的一種預測方法。
(3)指數平滑法
指數平滑法是以一個(gè)指標本身過(guò)去變化的趨勢作為預測未來(lái)的依據的一種方法。對未來(lái)預測時(shí),考慮則近期資料的影響應比遠期為大,因而對不同時(shí)期的資料不同的權數,越是近期資料權數越大,反之權數越小。
(4)平均發(fā)展速度法
(5)一元線(xiàn)性回歸預測法
根據x、y現有數據,尋求合理的a、b回歸系數,得出一條變動(dòng)直線(xiàn),并使線(xiàn)上各點(diǎn)至實(shí)際資料上的對應點(diǎn)之間的距離最小。
設變動(dòng)直線(xiàn)方程為:y=a+bx
(6)高低點(diǎn)法
高低點(diǎn)法是利用代數式y=a+bx,選用一定歷史資料中的最高業(yè)務(wù)量與最低業(yè)務(wù)量的總成本(或總費用)之差△y,與兩者業(yè)務(wù)量之差△x進(jìn)行對比,求出b,然后再求出a的方法。
(7)時(shí)間序列預測法
它時(shí)間序利預測法是把一系列的時(shí)間作為自變量來(lái)確定直線(xiàn)方程y=a+bx,進(jìn)而求出a、b的值,這是回歸預測的特殊式。
一、掌握基礎、更新知識。
基本技術(shù)怎么強調都不過(guò)分。這里的術(shù)更多是(計算機、統計知識), 多年做數據分析、數據挖掘的經(jīng)歷來(lái)看、以及業(yè)界朋友的交流來(lái)看,這點(diǎn)大家深有感觸的。
數據庫查詢(xún)—SQL 數據分析師在計算機的層面的技能要求較低,主要是會(huì )SQL,因為這里解決一個(gè)數據提取的問(wèn)題。有機會(huì )可以去逛逛一些專(zhuān)業(yè)的數據論壇,學(xué)習一些SQL技巧、新的函數,對你工作效率的提高是很有幫助的。
統計知識與數據挖掘 你要掌握基礎的、成熟的數據建模方法、數據挖掘方法。例如:多元統計:回歸分析、因子分析、離散等,數據挖掘中的:決策樹(shù)、聚類(lèi)、關(guān)聯(lián)規則、神經(jīng)網(wǎng)絡(luò )等。
但是還是應該關(guān)注一些博客、論壇中大家對于最新方法的介紹,或者是對老方法的新運用,不斷更新自己知識,才能跟上時(shí)代,也許你工作中根本不會(huì )用到,但是未來(lái)呢?行業(yè)知識 如果數據不結合具體的行業(yè)、業(yè)務(wù)知識,數據就是一堆數字,不代表任何東西。是冷冰冰,是不會(huì )產(chǎn)生任何價(jià)值的,數據驅動(dòng)營(yíng)銷(xiāo)、提高科學(xué)決策一切都是空的。
一名數據分析師,一定要對所在行業(yè)知識、業(yè)務(wù)知識有深入的了解。例如:看到某個(gè)數據,你首先必須要知道,這個(gè)數據的統計口徑是什么?是如何取出來(lái)的?這個(gè)數據在這個(gè)行業(yè), 在相應的業(yè)務(wù)是在哪個(gè)環(huán)節是產(chǎn)生的?數值的代表業(yè)務(wù)發(fā)生了什么(背景是什么)?對于A(yíng)部門(mén)來(lái)說(shuō),本月新會(huì )員有10萬(wàn),10萬(wàn)好還是不好呢?先問(wèn)問(wèn)上面的這個(gè)問(wèn)題:對于A(yíng)部門(mén),1、新會(huì )員的統計口徑是什么。
第一次在使用A部門(mén)的產(chǎn)品的會(huì )員?還是在站在公司角度上說(shuō),第一次在公司發(fā)展業(yè)務(wù)接觸的會(huì )員?2、是如何統計出來(lái)的。A:時(shí)間;是通過(guò)創(chuàng )建時(shí)間,還是業(yè)務(wù)完成時(shí)間。
B:業(yè)務(wù)場(chǎng)景。是只要與業(yè)務(wù)發(fā)接觸,例如下了單,還是要業(yè)務(wù)完成后,到成功支付。
3、這個(gè)數據是在哪個(gè)環(huán)節統計出來(lái)。在注冊環(huán)節,在下單環(huán)節,在成功支付環(huán)節。
4、這個(gè)數據代表著(zhù)什么。10萬(wàn)高嗎?與歷史相同比較?是否做了營(yíng)銷(xiāo)活動(dòng)?這個(gè)行業(yè)處理行業(yè)生命同期哪個(gè)階段?在前面二點(diǎn),更多要求你能按業(yè)務(wù)邏輯,來(lái)進(jìn)行數據的提取(更多是寫(xiě)SQL代碼從數據庫取出數據)。
后面二點(diǎn),更重要是對業(yè)務(wù)了解,更行業(yè)知識了解,你才能進(jìn)行相應的數據解讀,才能讓數據產(chǎn)生真正的價(jià)值,不是嗎?對于新進(jìn)入數據行業(yè)或者剛進(jìn)入數據行業(yè)的朋友來(lái)說(shuō):行業(yè)知識都重要,也許你看到很多的數據行業(yè)的同仁,在微博或者寫(xiě)文章說(shuō),數據分析思想、行業(yè)知識、業(yè)務(wù)知識很重要。我非常同意。
因為作為數據分析師,在發(fā)表任何觀(guān)點(diǎn)的時(shí)候,都不要忘記你居于的背景是什么?但大家一定不要忘記了一些基本的技術(shù),不要把基礎去忘記了,如果一名數據分析師不會(huì )寫(xiě)SQL,那麻煩就大了。哈哈。
你只有把數據先取對了,才能正確的分析,否則一切都是錯誤了,甚至會(huì )導致致命的結論。
新同學(xué),還是好好花時(shí)間把基礎技能學(xué)好。因為基礎技能你可以在短期內快速提高,但是在行業(yè)、業(yè)務(wù)知識的是一點(diǎn)一滴的積累起來(lái)的,有時(shí)候是急不來(lái)的,這更需要花時(shí)間慢慢去沉淀下來(lái)。
不要過(guò)于追求很高級、高深的統計方法,我提倡有空還是要多去學(xué)習基本的統計學(xué)知識,從而提高工作效率,達到事半功倍。以我經(jīng)驗來(lái)說(shuō),我負責任告訴新進(jìn)的同學(xué),永遠不要忘記基本知識、基本技能的學(xué)習。
二、要有三心。1、細心。
2、耐心。3、靜心。
數據分析師其實(shí)是一個(gè)細活,特別是在前文提到的例子中的前面二點(diǎn)。而且在數據分析過(guò)程中,是一個(gè)不斷循環(huán)迭代的過(guò)程,所以一定在耐心,不怕麻煩,能靜下心來(lái)不斷去修改自己的分析思路。
三、形成自己結構化的思維。數據分析師一定要嚴謹。
而嚴謹一定要很強的結構化思維,如何提高結構化思維,也許只需要工作隊中不斷的實(shí)踐。但是我推薦你用mindmanagement,首先把你的整個(gè)思路整理出來(lái),然后根據分析不斷深入、得到的信息不斷增加的情況下去完善你的結構,慢慢你會(huì )形成一套自己的思想。
當然有空的時(shí)候去看看《麥肯錫思維》、結構化邏輯思維訓練的書(shū)也不錯。在我以為多看看你身邊更資深同事的報告,多問(wèn)問(wèn)他們是怎么去考慮這個(gè)問(wèn)題的,別人的思想是怎么樣的?他是怎么構建整個(gè)分析體系的。
四、業(yè)務(wù)、行業(yè)、商業(yè)知識。當你掌握好前面的基本知識和一些技巧性東西的時(shí)候,你應該在業(yè)務(wù)、行業(yè)、商業(yè)知識的學(xué)習與積累上了。
這個(gè)放在最后,不是不重要,而且非常重要,如果前面三點(diǎn)是決定你能否進(jìn)入這個(gè)行業(yè),那么這則是你進(jìn)入這個(gè)行業(yè)后,能否成功的最根本的因素。 數據與具體行業(yè)知識的關(guān)系,比作池塘中魚(yú)與水的關(guān)系一點(diǎn)都不過(guò)分,數據(魚(yú))離開(kāi)了行業(yè)、業(yè)務(wù)背景(水)是死的,是不可能是“活”。
而沒(méi)有“魚(yú)”的水,更像是“死”水,你去根本不知道看什么(方向在哪)。如何提高業(yè)務(wù)知識,特別是沒(méi)有相關(guān)背景的同學(xué)。
很簡(jiǎn)單,我總結了幾點(diǎn):1、多向業(yè)務(wù)部門(mén)的同事請教,多溝通。多向他們請教,數據分析師與業(yè)務(wù)部門(mén)沒(méi)有利益沖突,而更向是共生體,所以如果你態(tài)度好,相信業(yè)務(wù)部門(mén)的同事也很愿意把他們知道的告訴你。
2、永遠不要忘記了google大神,定制一些行業(yè)的關(guān)鍵字,每天都先看看定制的郵件。3、每天有空去瀏。
分析大數據,R語(yǔ)言和Linux系統比較有幫助,運用到的方法原理可以翻翻大學(xué)的統計學(xué),不需要完全理解,重在應用。
分析簡(jiǎn)單數據,Excel就可以了。Excel本意就是智能,功能很強,容易上手。我沒(méi)有見(jiàn)過(guò)有人說(shuō)自己精通Excel的,最多是熟悉Excel。Excel的函數可以幫助你處理大部分數據。
數據分析是指用適當的統計分析方法對收集來(lái)的大量數據進(jìn)行分析,提取有用信息和形成結論而對數據加以詳細研究和概括總結的過(guò)程。這一過(guò)程也是質(zhì)量管理體系的支持過(guò)程。在實(shí)用中,數據分析可幫助人們作出判斷,以便采取適當行動(dòng)。
數據分析的數學(xué)基礎在20世紀早期就已確立,但直到計算機的出現才使得實(shí)際操作成為可能,并使得數據分析得以推廣。數據分析是數學(xué)與計算機科學(xué)相結合的產(chǎn)物。
“啤酒與尿布”的故事產(chǎn)生于20世紀90年代的美國沃爾瑪超市中,沃爾瑪的超市管理人員分析銷(xiāo)售數據時(shí)發(fā)現了一個(gè)令人難于理解的現象:在某些特定的情況下,“啤酒”與“尿布”兩件看上去毫無(wú)關(guān)系的商品會(huì )經(jīng)常出現在同一個(gè)購物籃中,這種獨特的銷(xiāo)售現象引起了管理人員的注意,經(jīng)過(guò)后續調查發(fā)現,這種現象出現在年輕的父親身上。
在美國有嬰兒的家庭中,一般是母親在家中照看嬰兒,年輕的父親前去超市購買(mǎi)尿布。父親在購買(mǎi)尿布的同時(shí),往往會(huì )順便為自己購買(mǎi)啤酒,這樣就會(huì )出現啤酒與尿布這兩件看上去不相干的商品經(jīng)常會(huì )出現在同一個(gè)購物籃的現象。如果這個(gè)年輕的父親在賣(mài)場(chǎng)只能買(mǎi)到兩件商品之一,則他很有可能會(huì )放棄購物而到另一家商店, 直到可以一次同時(shí)買(mǎi)到啤酒與尿布為止。沃爾瑪發(fā)現了這一獨特的現象,開(kāi)始在賣(mài)場(chǎng)嘗試將啤酒與尿布擺放在相同的區域,讓年輕的父親可以同時(shí)找到這兩件商品,并很快地完成購物;而沃爾瑪超市也可以讓這些客戶(hù)一次購買(mǎi)兩件商品、而不是一件,從而獲得了很好的商品銷(xiāo)售收入,這就是“啤酒與尿布” 故事的由來(lái)。
當然“啤酒與尿布”的故事必須具有技術(shù)方面的支持。1993年美國學(xué)者Agrawal提出通過(guò)分析購物籃中的商品集合,從而找出商品之間關(guān)聯(lián)關(guān)系的關(guān)聯(lián)算法,并根據商品之間的關(guān)系,找出客戶(hù)的購買(mǎi)行為。艾格拉沃從數學(xué)及計算機算法角度提 出了商品關(guān)聯(lián)關(guān)系的計算方法——Aprior算法。沃爾瑪從上個(gè)世紀 90 年代嘗試將 Aprior 算 法引入到 POS機數據分析中,并獲得了成功,于是產(chǎn)生了“啤酒與尿布”的故事。
去百度文庫,查看完整內容>
內容來(lái)自用戶(hù):魏瓊妹
市場(chǎng)預測方法的選擇
據統計,學(xué)者們提出的市場(chǎng)預測方法,已達150多種,這些方法均有其獨特的作用、特色與適用范圍,也郡有其不足與局限。實(shí)踐證明,預測的準確性、科學(xué)性與可信性,在很大程度上取決于預測方法的選擇是否恰當。人們在市場(chǎng)預測的實(shí)際操作過(guò)程中發(fā)現,在相同的條件下,不同的預測方法將會(huì )產(chǎn)生不同的預測結果。因此,預測方法的選擇是市場(chǎng)預測過(guò)程中極其重要的--個(gè)環(huán)節。企業(yè)在選擇預測方法時(shí),下述幾個(gè)因素必須要考慮。
(1)根據預測對象與目的的不同選擇預測方法
從行業(yè)角度看,大多數輕紡工業(yè)產(chǎn)品生命周期短,市場(chǎng)需求量大,通常宜進(jìn)行短期預測。機械工業(yè)或其他重工業(yè),產(chǎn)品生命周期長(cháng),價(jià)值昂貴而市場(chǎng)需求量不很大,加上市場(chǎng)的地域范圍比較遼闊,一般應采用中、長(cháng)期預測。服裝、農機等行業(yè)的銷(xiāo)售通常具有較強的季節性,就應較為重視季節變動(dòng)量的預測。而各種專(zhuān)用設備、專(zhuān)用機械的制造廠(chǎng),因其產(chǎn)品使用面比較窄,用戶(hù)比較明確,常可采用相關(guān)的推算法進(jìn)行預測。
從產(chǎn)品的角度看,同一種產(chǎn)品處于生命周期的不同階段,市場(chǎng)特性和決策重點(diǎn)不同,市場(chǎng)預測也應選用不同的方法。在產(chǎn)品研制階段,一般采用直觀(guān)預測法;在產(chǎn)品試銷(xiāo)階段,一般采用實(shí)驗市場(chǎng)法和典型調查預測法;在產(chǎn)品暢銷(xiāo)期,需求量迅速上升時(shí),可采用線(xiàn)性或非線(xiàn)性回歸法,如果產(chǎn)品受季節變動(dòng)影響,還要考慮采用季節變動(dòng)預測;在產(chǎn)品成熟階段,需求量一般處于穩定狀態(tài),可采用簡(jiǎn)單平均法、加(3)根據數字資料的規
② 數據分析為了挖掘更多的問(wèn)題,并找到原因; ③ 不能為了做數據分析而坐數據分析。
2、步驟:① 調查研究:收集、分析、挖掘數據 ② 圖表分析:分析、挖掘的結果做成圖表 3、常用方法: 利用數據挖掘進(jìn)行數據分析常用的方法主要有分類(lèi)、回歸分析、聚類(lèi)、關(guān)聯(lián)規則、特征、變化和偏差分析、Web頁(yè)挖掘等,它們分別從不同的角度對數據進(jìn)行挖掘。 ①分類(lèi)。
分類(lèi)是找出數據庫中一組數據對象的共同特點(diǎn)并按照分類(lèi)模式將其劃分為不同的類(lèi),其目的是通過(guò)分類(lèi)模型,將數據庫中的數據項映射到某個(gè)給定的類(lèi)別。它可以應用到客戶(hù)的分類(lèi)、客戶(hù)的屬性和特征分析、客戶(hù)滿(mǎn)意度分析、客戶(hù)的購買(mǎi)趨勢預測等,如一個(gè)汽車(chē)零售商將客戶(hù)按照對汽車(chē)的喜好劃分成不同的類(lèi),這樣營(yíng)銷(xiāo)人員就可以將新型汽車(chē)的廣告手冊直接郵寄到有這種喜好的客戶(hù)手中,從而大大增加了商業(yè)機會(huì )。
②回歸分析。回歸分析方法反映的是事務(wù)數據庫中屬性值在時(shí)間上的特征,產(chǎn)生一個(gè)將數據項映射到一個(gè)實(shí)值預測變量的函數,發(fā)現變量或屬性間的依賴(lài)關(guān)系,其主要研究問(wèn)題包括數據序列的趨勢特征、數據序列的預測以及數據間的相關(guān)關(guān)系等。
它可以應用到市場(chǎng)營(yíng)銷(xiāo)的各個(gè)方面,如客戶(hù)尋求、保持和預防客戶(hù)流失活動(dòng)、產(chǎn)品生命周期分析、銷(xiāo)售趨勢預測及有針對性的促銷(xiāo)活動(dòng)等。 ③聚類(lèi)。
聚類(lèi)分析是把一組數據按照相似性和差異性分為幾個(gè)類(lèi)別,其目的是使得屬于同一類(lèi)別的數據間的相似性盡可能大,不同類(lèi)別中的數據間的相似性盡可能小。它可以應用到客戶(hù)群體的分類(lèi)、客戶(hù)背景分析、客戶(hù)購買(mǎi)趨勢預測、市場(chǎng)的細分等。
④關(guān)聯(lián)規則。關(guān)聯(lián)規則是描述數據庫中數據項之間所存在的關(guān)系的規則,即根據一個(gè)事務(wù)中某些項的出現可導出另一些項在同一事務(wù)中也出現,即隱藏在數據間的關(guān)聯(lián)或相互關(guān)系。
在客戶(hù)關(guān)系管理中,通過(guò)對企業(yè)的客戶(hù)數據庫里的大量數據進(jìn)行挖掘,可以從大量的記錄中發(fā)現有趣的關(guān)聯(lián)關(guān)系,找出影響市場(chǎng)營(yíng)銷(xiāo)效果的關(guān)鍵因素,為產(chǎn)品定位、定價(jià)與定制客戶(hù)群,客戶(hù)尋求、細分與保持,市場(chǎng)營(yíng)銷(xiāo)與推銷(xiāo),營(yíng)銷(xiāo)風(fēng)險評估和詐騙預測等決策支持提供參考依據。 ⑤特征。
特征分析是從數據庫中的一組數據中提取出關(guān)于這些數據的特征式,這些特征式表達了該數據集的總體特征。如營(yíng)銷(xiāo)人員通過(guò)對客戶(hù)流失因素的特征提取,可以得到導致客戶(hù)流失的一系列原因和主要特征,利用這些特征可以有效地預防客戶(hù)的流失。
⑥變化和偏差分析。偏差包括很大一類(lèi)潛在有趣的知識,如分類(lèi)中的反常實(shí)例,模式的例外,觀(guān)察結果對期望的偏差等,其目的是尋找觀(guān)察結果與參照量之間有意義的差別。
在企業(yè)危機管理及其預警中,管理者更感興趣的是那些意外規則。意外規則的挖掘可以應用到各種異常信息的發(fā)現、分析、識別、評價(jià)和預警等方面。
⑦Web頁(yè)挖掘。
聲明:本網(wǎng)站尊重并保護知識產(chǎn)權,根據《信息網(wǎng)絡(luò )傳播權保護條例》,如果我們轉載的作品侵犯了您的權利,請在一個(gè)月內通知我們,我們會(huì )及時(shí)刪除。
蜀ICP備2020033479號-4 Copyright ? 2016 學(xué)習?shū)B(niǎo). 頁(yè)面生成時(shí)間:3.166秒